The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117629 Number of Gorenstein partitions of n, i.e., those partitions of n whose corresponding Schubert variety has a Gorenstein homogeneous coordinate ring, or equivalently those partitions of n which, when regarded as order ideals of PxP (where P={1,2,...}), have all maximal chains of the same length. 0
1, 2, 3, 3, 5, 5, 5, 7, 10, 5, 11, 11, 11, 15, 15, 8, 23, 19, 21, 21, 27, 15, 29, 39, 34, 36, 37, 22, 61, 37 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
R. P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83 (Theorem 5.4).
T. Svanes, Coherent cohomology of Schubert subschemes of flag schemes and applications, Advances in Math. 14 (1974), 369-453 (Theorem 5.5.6).
FORMULA
f(n) is the number of finite sequences of length > 1 of positive integers such that n is the second elementary symmetric function of the terms of the sequence. The ordinary generating function for f(n) is the infinite determinant (which is well-defined as a formal power series) det(A_{ij}), i,j > 0, where A_{11} = 0, A_{1j} = -Sum_{k=1..j-1} x^(k(j-k)) if j > 1, A_{i1} = 1 if i > 1, A_{ii} = 1 if i > 1, A_{ij} = -x^(i(j-i)) if j > i > 1 and A_{ij} = 0 if i > j > 1.
EXAMPLE
f(10)=5 because the Gorenstein partitions of 10 are (10), (5,5), (2,2,2,2,2), (1,1,1,1,1,1,1,1,1,1) and (4,3,2,1). The sequences for which 10 is the second elementary symmetric function are (1,10), (2,5), (5,2), (10,1) and (1,1,1,1,1).
CROSSREFS
Sequence in context: A086162 A036703 A306253 * A081165 A289749 A087172
KEYWORD
easy,nonn
AUTHOR
Richard Stanley, Oct 04 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 19:58 EDT 2024. Contains 372882 sequences. (Running on oeis4.)