

A046057


Smallest order m>0 for which there are n nonisomorphic finite groups of order m, or 0 if no such order exists.


6



1, 4, 75, 28, 8, 42, 375, 510, 308, 90, 140, 88, 56, 16, 24, 100, 675, 156, 1029, 820, 1875, 6321, 294, 546, 2450, 2550, 1210, 2156, 1380, 270, 11774, 630
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

R. Keith Dennis conjectures that there are no 0's in this sequence. See A053403 for details.
In (John H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), m is called the "minimal order attaining n" and is denoted by moa(n).  Daniel Forgues, Feb 15 2017
a(33) > 30500.  Muniru A Asiru, Nov 15 2017


REFERENCES

J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 209.


LINKS

Table of n, a(n) for n=1..32.
H. U. Besche, The Small Groups library
Hans Ulrich Besche and Bettina Eick, Construction of finite groups, Journal of Symbolic Computation, Vol. 27, No. 4, Apr 15 1999, pp. 387404.
Hans Ulrich Besche and Bettina Eick, The groups of order at most 1000 except 512 and 768, Journal of Symbolic Computation, Vol. 27, No. 4, Apr 15 1999, pp. 405413.
John H. Conway, Heiko Dietrich and E. A. O'Brien, Counting groups: gnus, moas and other exotica, The Mathematical Intelligencer, March 2008, Volume 30, Issue 2, pp 615.
John H. Conway, Heiko Dietrich and E. A. O'Brien, Table of n, a(n) for n = 1..100 (with some question marks)
Eric Weisstein's World of Mathematics, Finite Group.
Index entries for groups


CROSSREFS

Cf. A000001, A046056, A046058, A046059, A053403.
Sequence in context: A007157 A000857 A240007 * A280889 A257367 A072373
Adjacent sequences: A046054 A046055 A046056 * A046058 A046059 A046060


KEYWORD

nonn,more


AUTHOR

Eric W. Weisstein


EXTENSIONS

More terms from Victoria A. Sapko (vsapko(AT)canes.gsw.edu), Nov 04 2003
a(20) corrected by N. J. A. Sloane, Jan 21 2004
More terms from N. J. A. Sloane, Oct 03 2008, from the John H. Conway, Heiko Dietrich and E. A. O'Brien article.
a(31)a(32) from Muniru A Asiru, Nov 15 2017


STATUS

approved



