login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257367
Composite numbers n equal to the sum of prime factors, counted with multiplicity, of the numbers in the interval [n-k,n+k], for some k.
5
4, 75, 186, 531, 627, 5216, 22843, 148050, 1061385, 1490407, 1562485, 9034704, 10422738, 31920786, 76343543, 78824242, 105791155, 111873121, 131515163, 549038887, 1318856915, 1394579379, 1630428366, 1639063828, 3710476544, 3996221763, 4524478925, 6172721935
OFFSET
1,1
COMMENTS
Prime numbers are not considered because they are a trivial solution being the sum of their single prime factor (case k = 0).
Composite n such that n = Sum_{i=-k..k} A001414(i+n) for some k.
Values of k are 0, 1, 2, 4, 3, 4, 7, 6, 6, 8, 8, 9, 12, 8, 17, 9, 11, 4, 18, 11, ...
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..40 (terms < 3*10^11)
EXAMPLE
Prime factors of 4 are 2, 2 and 2 + 2 = 4. In this case k = 0.
For 75, k is equal to 1. Let us consider the prime factors of 74, 75 and 76. They are: 2, 37; 3, 5, 5; 2, 2, 19. Their sum is 2 + 37 + 3 + 5 + 5 + 2 + 2 + 19 = 75.
For 186, k is equal to 2. Let us consider the prime factors of 184, 185, 186, 187, 188. They are: 2, 2, 2, 23; 5, 37; 2, 3, 31; 11, 17; 2, 2, 47. Their sum is 2 + 2 + 2 + 23 + 5 + 37 + 2 + 3 + 31 + 11 + 17 + 2 + 2 + 47 = 186.
MAPLE
with(numtheory); P:= proc(q) local a, c, d, j, k, n;
for n from 2 to q do if not isprime(n) then a:=ifactors(n)[2];
k:=0; a:=add(a[j][1]*a[j][2], j=1..nops(a));
while a<n do k:=k+1; c:=ifactors(n-k)[2]; d:=ifactors(n+k)[2];
c:=add(c[j][1]*c[j][2], j=1..nops(c));
d:=add(d[j][1]*d[j][2], j=1..nops(d));
a:=a+c+d; od; if a=n then print(n); fi; fi; od; end: P(10^9);
PROG
(PARI) sopfr(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 1]*f[k, 2]);
isok(n) = {my(s = sopfr(n)); my(k = 1); while (s < n, s += sopfr(n-k) + sopfr(n+k); k++); s == n; }
lista(nn) = {forcomposite(n=2, nn, if (isok(n), print1(n, ", ")); ); } \\ Michel Marcus, May 27 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Apr 21 2015
EXTENSIONS
a(21)-a(28) from Giovanni Resta, May 27 2015
STATUS
approved