login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072373
Complexity of doubled cycle (regarding case n = 2 as a graph).
2
1, 4, 75, 384, 1805, 8100, 35287, 150528, 632025, 2620860, 10759331, 43804800, 177105253, 711809364, 2846259375, 11330543616, 44929049777, 177540878700, 699402223099, 2747583822720, 10766828545725, 42095796462852, 164244726238343, 639620518118400, 2486558615814025
OFFSET
1,2
LINKS
Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
FORMULA
G.f.: -8*x^2+x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2.
a(n) = 10*a(n-1)-35*a(n-2)+52*a(n-3)-35*a(n-4)+10*a(n-5)-a(n-6), n>8.
PROG
(PARI) /* prism (or doubled cycle) graph with n vertices */ prism(n)=if(n%2, [; ], matrix(n, n, i, j, i!=j && ((abs(i-j)==1 && (i+j)!=n+1) || (abs(i-j)==n/2-1 && (i+j)%n==n/2+1) || abs(i-j)==n/2)))
(PARI) /* treenumber (or complexity) of a graph */ treenumber(m)=local(n); n=matdim(m); if(n, matdet(adj2laplace(m)+matone(n))/n^2)
(PARI) /* convert adjacency matrix to laplacian matrix */ adj2laplace(m)=local(l, n); n=matdim(m); matdiagonal(m*vectorv(n, i, 1))-m
(PARI) /* matrix J of all ones */ matone(n)=matrix(n, n, i, j, 1) /* dimension of a square matrix */ matdim(m)=matsize(m)[1]
(PARI) a(n)=treenumber(prism(2*n))
(PARI) a(n)=if(n<0, 0, polcoeff(-8*x^2+x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2+x*O(x^n), n))
CROSSREFS
Apart from a(2) coincides with A006235.
Sequence in context: A046057 A280889 A257367 * A006412 A206456 A137220
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jul 19 2002
STATUS
approved