OFFSET
1,2
LINKS
Stefano Spezia, Table of n, a(n) for n = 1..1700
Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
Index entries for linear recurrences with constant coefficients, signature (10,-35,52,-35,10,-1).
FORMULA
G.f.: -8*x^2+x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2.
a(n) = 10*a(n-1)-35*a(n-2)+52*a(n-3)-35*a(n-4)+10*a(n-5)-a(n-6), n>8.
PROG
(PARI) /* prism (or doubled cycle) graph with n vertices */ prism(n)=if(n%2, [; ], matrix(n, n, i, j, i!=j && ((abs(i-j)==1 && (i+j)!=n+1) || (abs(i-j)==n/2-1 && (i+j)%n==n/2+1) || abs(i-j)==n/2)))
(PARI) /* treenumber (or complexity) of a graph */ treenumber(m)=local(n); n=matdim(m); if(n, matdet(adj2laplace(m)+matone(n))/n^2)
(PARI) /* convert adjacency matrix to laplacian matrix */ adj2laplace(m)=local(l, n); n=matdim(m); matdiagonal(m*vectorv(n, i, 1))-m
(PARI) /* matrix J of all ones */ matone(n)=matrix(n, n, i, j, 1) /* dimension of a square matrix */ matdim(m)=matsize(m)[1]
(PARI) a(n)=treenumber(prism(2*n))
(PARI) a(n)=if(n<0, 0, polcoeff(-8*x^2+x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2+x*O(x^n), n))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jul 19 2002
STATUS
approved