login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072376
a(n) = a(floor(n/2)) + a(floor(n/4)) + a(floor(n/8)) + ... starting with a(0)=0 and a(1)=1.
24
0, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
OFFSET
0,5
LINKS
FORMULA
For n > 1: a(n) = msb(n)/2 = 2^floor(log_2(n)-1) = 2*a(floor(n/2)).
G.f.: 1/(2-2x) * (2x-x^2 + Sum_{k>=1} 2^(k-1)*x^2^k). - Ralf Stephan, Apr 18 2003
MATHEMATICA
lim = 100; CoefficientList[Series[1/(2 - 2 x) (2 x - x^2 + Sum[ 2^(k - 1) x^2^k, {k, Floor@ Log2@ lim}]), {x, 0, lim}], x] (* Michael De Vlieger, Jan 26 2016 *)
PROG
(PARI) a(n)=if(n<2, return(n)); 2^logint(n\2, 2) \\ Charles R Greathouse IV, Jan 26 2016
(Python)
def A072376(n): return n if n < 2 else 1 << n.bit_length()-2 # Chai Wah Wu, Jun 30 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jul 19 2002
STATUS
approved