login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257524
Composite numbers equal to the sum of the prime factors, with multiplicity, of the next k numbers, for some k.
5
49, 132, 1070, 1140, 2862, 40652, 158170, 204252, 365859, 656092, 806526, 812571, 861444, 1031941, 4017612, 4227164, 8045675, 15843252, 16298931, 48625784, 81869208, 129071545, 142516026, 219039320, 266299218, 520700301, 537506243, 590578292, 600500937, 915352703
OFFSET
1,1
COMMENTS
Values of k are 3, 4, 8, 5, 9, 9, 17, 25, 22, 18, 11, 15, 9, 20, 10, 12, 21, 26, 30, 25, 15, 14, 21, 30, 22, 26, 20, 13, 19, 11, ...
EXAMPLE
For 49, consider the prime factors of the next 3 numbers, 50, 51, 52: 2, 5, 5; 3, 17; 2, 2, 13. Their sum is 2 + 5 + 5 + 3 + 17 + 2 + 2 + 13 = 49.
For 132, consider the prime factors of the next 4 numbers, 133, 134, 135, 136: 7, 19; 2, 67; 3, 3, 3, 5; 2, 2, 2, 17. Their sum is 7 + 19 + 2 + 67 + 3 + 3 + 3 + 5 + 2 + 2 + 2 + 17 = 132.
MAPLE
with(numtheory): P:= proc(q) local a, d, j, k, n;
for n from 2 to q do if not isprime(n) then a:=0; k:=0;
while a<n do k:=k+1; d:=ifactors(n+k)[2];
d:=add(d[j][1]*d[j][2], j=1..nops(d));
a:=a+d; od; if a=n then print(n);
fi; fi; od; end: P(10^9);
PROG
(PARI) sopfr(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 1]*f[k, 2]);
isok(n) = {my(s = 0); my(k = 1); while (s < n, s += sopfr(n+k); k++); s == n; }
lista(nn) = {forcomposite(n=2, nn, if (isok(n), print1(n, ", ")); ); } \\ Michel Marcus, May 27 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Apr 28 2015
STATUS
approved