login
A257523
Number T(n,k) of equivalence classes of ways of placing k 4 X 4 tiles in an n X 7 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=4, 0<=k<=floor(n/4), read by rows.
1
1, 2, 1, 2, 1, 4, 1, 4, 1, 6, 6, 1, 6, 14, 1, 8, 28, 1, 8, 44, 1, 10, 66, 20, 1, 10, 90, 64, 1, 12, 120, 168, 1, 12, 152, 320, 1, 14, 190, 572, 72, 1, 14, 230, 896, 328, 1, 16, 276, 1360, 984, 1, 16, 324, 1920, 2264, 1, 18, 378, 2660, 4528, 272
OFFSET
4,2
LINKS
Christopher Hunt Gribble, C++ program
EXAMPLE
The first 9 rows of T(n,k) are:
.\ k 0 1 2 3
n
4 1 2
5 1 2
6 1 4
7 1 4
8 1 6 6
9 1 6 14
10 1 8 28
11 1 8 44
12 1 10 66 20
13 1 10 90 64
14 1 12 120 168
15 1 12 152 320
PROG
(PARI)
T(n, k)={(4^k*binomial(n-3*k, k) + ((n%2==0||k%2==0)+(k%2==0)+(k==0)) * 4^((k+1)\2)*binomial((n-3*k-(k%2)-(n%2))/2, k\2))/4}
for(n=4, 15, for(k=0, (n\4), print1(T(n, k), ", ")); print) \\ Andrew Howroyd, May 29 2017
KEYWORD
tabf,nonn
AUTHOR
EXTENSIONS
Terms a(24) and beyond by Andrew Howroyd, May 29 2017
STATUS
approved