Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 May 28 2015 03:38:55
%S 49,132,1070,1140,2862,40652,158170,204252,365859,656092,806526,
%T 812571,861444,1031941,4017612,4227164,8045675,15843252,16298931,
%U 48625784,81869208,129071545,142516026,219039320,266299218,520700301,537506243,590578292,600500937,915352703
%N Composite numbers equal to the sum of the prime factors, with multiplicity, of the next k numbers, for some k.
%C Values of k are 3, 4, 8, 5, 9, 9, 17, 25, 22, 18, 11, 15, 9, 20, 10, 12, 21, 26, 30, 25, 15, 14, 21, 30, 22, 26, 20, 13, 19, 11, ...
%e For 49, consider the prime factors of the next 3 numbers, 50, 51, 52: 2, 5, 5; 3, 17; 2, 2, 13. Their sum is 2 + 5 + 5 + 3 + 17 + 2 + 2 + 13 = 49.
%e For 132, consider the prime factors of the next 4 numbers, 133, 134, 135, 136: 7, 19; 2, 67; 3, 3, 3, 5; 2, 2, 2, 17. Their sum is 7 + 19 + 2 + 67 + 3 + 3 + 3 + 5 + 2 + 2 + 2 + 17 = 132.
%p with(numtheory): P:= proc(q) local a,d,j,k,n;
%p for n from 2 to q do if not isprime(n) then a:=0; k:=0;
%p while a<n do k:=k+1; d:=ifactors(n+k)[2];
%p d:=add(d[j][1]*d[j][2],j=1..nops(d));
%p a:=a+d; od; if a=n then print(n);
%p fi; fi; od; end: P(10^9);
%o (PARI) sopfr(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 1]*f[k, 2]);
%o isok(n) = {my(s = 0); my(k = 1); while (s < n, s += sopfr(n+k); k++); s == n;}
%o lista(nn) = {forcomposite(n=2, nn, if (isok(n), print1(n, ", ")););} \\ _Michel Marcus_, May 27 2015
%Y Cf. A257367, A257525, A257929, A257930.
%K nonn
%O 1,1
%A _Paolo P. Lava_, Apr 28 2015