This site is supported by donations to The OEIS Foundation.

CiteL

From OeisWiki
Jump to: navigation, search


"As always when confronted with a sequence of integers, it pays off to look at The On-Line Encyclopedia of Integer Sequences http://oeis.org ..." [W. Lanssens et al., 2014]

"We are grateful to A. Schreiber for collaboration on [28] which inspired this project and for finding [the OEIS] based on the first few entries of Table 1." [Luke Lippstreu et al., 2019]

"Also, there are a number of datasets that are highly related to IQ test questions as well. For instance, the Online Encyclopedia of Integer Sequences (OEIS) contains over a quarter-million ... math sequences." [Yusen Liu et al., 2019]

"Step 2. Get the recursive formulae of A_n and B_n using [the OEIS]. Step 3. Compute the first few terms of A_n and B_n and using WolframAlpha and OEIS to guess a closed-form of them." [Zhentao Lu, 2019]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with L.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Ross La Haye, Quasi-Sunflower Sperner Families and Dedekind's Problem, ResearchGate, May 2017.
  2. Ross La Haye, Five Sums Associated with a k-ary Cartesian Product, and the Function f (q, n, m)= q * n * m^(n – 1), 2018. PDF (A000027, A001787, A002697, A002699, A005843, A007778, A018215, A027471, A027473, A036289, A036290, A036291, A036292, A036293, A036294, A053464, A053469, A053539, A053540, A053541, A081127, A085708, A120908, A126431, A134574, A158749, A167667, A193132, A212697, A212698, A212699, A212700, A212701, A212702, A212703, A212704, A229504, A230539, A230540, A241201, A269760, A269822, A269895, A270111)
  3. T. Laarhoven and B de Weger, The Collatz conjecture and De Bruijn graphs, arXiv preprint arXiv:1209.3495, 2012
  4. Patrick Labarque, Blueprint for a Classic Proof of the Four Colour Theorem (2008); arXiv:0802.1535 and Indag. Math., New Ser. 24, No. 4, 971-983 (2013). doi:10.1016/j.indag.2013.03.003
  5. Anthony Labarre, Review of "Combinatorial Pattern Matching Algorithms in Computational Biology Using Perl and R" by Gabriel Valiente, in William Gasarch, The Book Review Column, PDF 2012.
  6. Jean-Philippe Labbé, Carsten Lange, Cambrian acyclic domains: counting c-singletons, arXiv:1802.07978 [math.CO], 2018. (A000984, A001405)
  7. S. Labbé, E. Pelantová, Palindromic sequences generated from marked morphisms, arXiv preprint arXiv:1409.7510, 2014
  8. Gilbert Labelle, On combinatorial differential equations, Journal of Mathematical Analysis and Applications, Volume 113, Issue 2, 1 February 1986, Pages 344-381.
  9. Gilbert Labelle, Counting asymmetric enriched trees, Journal of Symbolic Computation, Volume 14, Issues 2-3, August-September 1992, Pages 211-242.
  10. G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Mathematics 217, numbers 1-3 (2000), 237-248.
  11. Gilbert Labelle and Annie Lacasse, Closed paths whose steps are roots of unity, in FPSAC 2011, Reykjav´k, Iceland, DMTCS proc. AO, 2011, 599-610; http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/download/dmAO0153/3610.
  12. G. Labelle, C. Lamathe and P. Leroux, Molecular expansion of the species of plane and planar 2-trees, Accepted for publication in Theoretical Computer Science (26 pages). (PostScript, Pdf)
  13. G. Labelle, C. Lamathe and P. Leroux, Enumeration des 2-arbres k-gonaux, communication acceptee au colloque MathInfo 2002 (15 pages). (PostScript, Pdf)
  14. G. Labelle, C. Lamathe and P. Leroux, arXiv:math.CO/0202052, A classification of plane and planar 2-trees, Theoretical Computer Science, 307 (2003), no. 2, 337-363.
  15. G. Labelle, C. Lamathe and P. Leroux, Labelled and unlabelled enumeration of k-gonal 2-trees, (ps, pdf), J. Combin. Theory Ser. A 106 (2004), no. 2, 193-219.
  16. G. Labelle and P. Leroux, An extension of the exponential formula in enumerative combinatorics, Electronic Journal of Combinatorics, Volume 3(2), 1996, article #R12.
  17. G. Labelle, P. Leroux, E. Pergola and R. Pinzani, Stirling numbers interpolation using permutations with forbidden subsequences, Discrete Mathematics, 246 (2002), 177-195.
  18. Labelle, Jacques. "Quelques especes sur les ensembles de petite cardinalité." Ann. Sc. Math. Québec 9.1 (1985): 31-58.
  19. J. Labelle, Self-avoiding walks and polyominoes in strips, Bull. ICA, 23 (1998), 88-98.
  20. P Laborde-Zubieta, Occupied Corners in Tree-like Tableaux, Séminaire Lotharingien de Combinatoire, 74 (2015), Article B74b.
  21. Michael La Croix, Approaches to the Enumerative Theory of Meanders, September 29, 2003.
  22. Lucas Lacasa, Bartolome Luque, Ignacio Gómez, Octavio Miramontes, On a Dynamical Approach to Some Prime Number Sequences, Entropy 20.2 (2018): 131, also arXiv:1802.08349 [math.NT], 2018. (A002144, A002145)
  23. G. Lachaud, On the distribution of the trace in the unitary symplectic group and the distribution of Frobenius, arXiv preprint arXiv:1506.06482, 2015.
  24. Gilles Lachaud, The distribution of the trace in the compact group of type G_2, in Arithmetic Geometry: Contemporary Mathematics (2019) Vol. 722, 79-103. doi:10.1090/conm/722/14536 (A059710)
  25. Marie-Louise Lackner, M Wallner, An invitation to analytic combinatorics and lattice path counting; Preprint, Dec 2015, http://dmg.tuwien.ac.at/mwallner/files/lpintro.pdf
  26. Marie-Louise Lackner and Martin Lackner, On the likelihood of single-peaked preferences, Social Choice and Welfare, April 2017, Volume 48, Issue 4, pp. 717-745. doi:10.1007/s00355-017-1033-0
  27. Nadia Lafrenière, Counting in a sophisticated manner, Algebraic Combinatorics (Math 68, Dartmouth College, 2019), Lecture 2. PDF (A000009)
  28. J. C. Lagarias, Wild and Wooley numbers, Amer. Math. Monthly, 113 (No. 2, 2006), 97-108.
  29. J. C. Lagarias, Euler's constant: Euler's work and modern developments, Bull. AMS, 50 (2013), 527-628.
  30. J. C. Lagarias, H. Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv preprint arXiv:1409.4145, 2014
  31. J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The EKG sequence, Experimental Math. 11 (2003), 437-446.
  32. J. C. Lagarias and N. J. A. Sloane, arXiv:math.CO/0310423 Approximate Squaring, Experimental Math., 13 (2004), 113-128.
  33. Ross La Haye, Binary relations on the power set of an n-element set, JIS 12 (2009) 09.2.6.
  34. Lucas Laird, Richard C. Tillquist, Stephen Becker, Manuel E. Lladser, Resolvability of Hamming Graphs, arXiv:1907.05974 [cs.DM], 2019. (A303735)
  35. Robert A. Laird, Brandon S. Schamp, Calculating Competitive Intransitivity: Computational Challenges, The American Naturalist (2018), Vol. 191, No. 4, 547-552. doi:10.1086/696266 (A000568, A003141)
  36. Robert A. Laird, Brandon S. Schamp, Exploring the performance of intransitivity indices in predicting coexistence in multispecies systems, Journal of Ecology (2018) Vol. 106, Issue 3, 815-825. doi:10.1111/1365-2745.12957 (A000568)
  37. Joshua D. Laison and Michelle Schick, "Seeing Dots: Visibility of Lattice Points", Mathematics Magazine, Vol. 80, #4, pp. 274 - 282 (2007).
  38. K Lakshmi, R Someshwari On The Negative Pell Equation y^2 = 72x^2 - 23, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 7, July (2016).
  39. A. Lakshminarayan, Z. Puchala, K. Zyczkowski, Diagonal unitary entangling gates and contradiagonal quantum states, arXiv preprint arXiv:1407.1169, 2014
  40. F. Lam, On the Well-posedness of Magnetohydrodynamics Equations for Incompressible Electrically-Conducting Fluids, arXiv preprint arXiv:1401.2029, 2014
  41. F. Lam, Vorticity evolution in a rigid pipe of circular cross-section, preprint arXiv:1505.07723 (A107841)
  42. Thomas Lam, Lauren Williams, Total positivity for cominuscule Grassmannians (2007), arXiv:0710.2932.
  43. Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(√d), arXiv:1904.13002 [math.NT], 2019. (A000032, A000045, A000129, A001075, A001081, A001085, A001333, A001353, A004189, A005667, A005668, A006190, A006497, A041061, A077412, A097309)
  44. Robin Lamarche-Perrin, An Information-theoretic Framework for the Lossy Compression of Link Streams, arXiv:1807.06874 [cs.DS], 2018. (A003095, A135361)
  45. R. Lamarche-Perrin, Y. Demazeau, J.-M. Vincent, A Generic Algorithmic Framework to Solve Special Versions of the Set Partitioning Problem, http://www.mis.mpg.de/preprints/2014/preprint2014_105.pdf, Preprint 105, Max-Planck-Institut fur Mathematik in den Naturwissenschaften, Leipzig, 2014.
  46. Konstantinos Lambropoulos, Constantinos Simserides, Spectral, localization and charge transport properties of periodic, aperiodic and random binary sequences, arXiv:1808.04764 [cond-mat.soft], 2018. (A001083)
  47. Cédric Lamathe, "The Number of Labelled k-Arch Graphs", J. Integer Sequences, Volume 7, 2004, Article 04.3.1.
  48. Lampe, P. Quantum cluster algebras of type A and the dual canonical basis. Proc. Lond. Math. Soc. (3) 108 (2014), no. 1, 1-43.
  49. Guillaume Lample, François Charton, Deep Learning for Symbolic Mathematics, arXiv:1912.01412 [cs.SC], 2019. (A006318)
  50. Leon Lampret and Aleš Vavpetič, Torsion table for the Lie algebra niln, arXiv:1708.02783 [math.AT], 2017.
  51. Bin Lan and James A. Sellers, Properties of a Restricted Binary Partition Function a la Andrews and Lewis, Electronic Journal of Combinatorial Number Theory, Volume 15 #A23. (A070047, A000695)
  52. Giuseppe Lancia, Paolo Serafini, Polyhedra. Chapter 2 of Compact Extended Linear Programming Models (2018). EURO Advanced Tutorials on Operational Research. Springer, Cham., 11. (A001653)
  53. W. Lang, On Polynomials Related to Powers and Derivatives of the Generating Function of Catalan's Numbers , KA-TP-4-1998, April.
  54. Wolfdieter Lang, "On Generalizations of the Stirling Number Triangles", J. Integer Sequences, Volume 3, 2000, Article 00.2.4.
  55. W. Lang, On Polynomials Related to Powers of the Generating Function of Catalan's Numbers, The Fibonacci Quarterly, Vol.38,5 (2000) pp 408-419.
  56. W. Lang, Riccati meets Fibonacci, KA-TP-11-2001, Jun. The Fibonacci Quarterly.
  57. W. Lang, On Polynomials Related to Derivatives of the Generating Function of Catalan Numbers, The Fibonacci Quarterly, Vol.40,4 (2002) pp 299-313.
  58. W. Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv preprint arXiv:1210.1018, 2012
  59. W. Lang, On Collatz' Words, Sequences and Trees, arXiv preprint arXiv:1404.2710, 2014
  60. W. Lang, Notes on Some Geometric and Algebraic Problems Solved by Origami, arXiv preprint arXiv:1409.4799, 2014
  61. Wolfdieter Lang, A Geometrical Problem of Omar Khayyám and its Cubic, preprint, 2015. (A256099)
  62. Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
  63. Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], 2017.
  64. Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent arXiv:1810.09787 2018.
  65. Thomas Lange, Biconnected reliability, Hochschule Mittweida (FH), Fakultät Mathematik/Naturwissenschaften/Informatik, Master's Thesis, 2015.
  66. Holger Langenau, Squaring the square: New methods for determining the number of perfect square packings, 2018. PDF (A034295)
  67. J. C. Langer and D. A. Singer, Subdividing the Trefoil by Origami, Geometry (Hindawi Publishing Company), 2013, #ID 897320.
  68. Philipp Langer, Felix Naumann, Efficient order dependency detection, The VLDB Journal 25.2 (2016): 223-241; doi:10.1007/s00778-015-0412-3.
  69. T. Langley, J. Liese, J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2
  70. Johanna Langner, Henryk A. Witek, Equivalence between Clar covering polynomials of single zigzag chains and tiling polynomials of 2 X n rectangles, Discrete Applied Mathematics Vol. 243 (2018), 297-303. doi:10.1016/j.dam.2018.02.019
  71. Alessandro Languasco, A note on the computation of the Euler-Kronecker constants for cyclotomic fields, arXiv:1903.05487 [math.NT], 2019. (A135311)
  72. Alessandro Languasco, Pieter Moree, Sumaia Saad Eddin, Alisa Sedunova, Computation of the Kummer ratio of the class number for prime cyclotomic fields, arXiv:1908.01152v3 [math.NT], 2019. (A135311)
  73. Jennifer Lansing, Distribution of Values of the Binomial Coefficients and the Stern Sequence, Journal of Integer Sequences, 16 (2013), #13.3.7.
  74. J. Lansing, On the Stern Sequence and a Related Sequence, Ph. D. Dissertation, Univ. Illinois, 2014.
  75. J. Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5.
  76. W. Lanssens, B. Demoen, P.-L. Nguyen, The Diagonal Latin Tableau and the Redundancy of its Disequalities, Report CW 666, July 2014, Department of Computer Science, KU Leuven; http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW666.pdf ["As always when confronted with a sequence of integers, it pays off to look at The On-Line Encyclopedia of Integer Sequences http://oeis.org ..."]
  77. Laphou Lao, Zecheng Li, Songlin Hou, Bin Xiao, Songtao Guo, Yuanyuan Yang, A Survey of IoT Applications in Blockchain Systems: Architecture, Consensus and Traffic Modeling, ACM Computing Surveys (CSUR, 2020) Vol. 53, No. 1, Article No. 18. doi:10.1145/3372136 (A003024)
  78. Laohakosol, Vichian; Yuttanan, Boonrod Iterates of increasing sequences of positive integers. Aequationes Math. 87 (2014), no. 1-2, 89-103.
  79. Gabriel Lapointe, On finding the smallest happy numbers of any heights, arXiv:1904.12032 [math.NT], 2019. (A001348)
  80. N. Laptyeva, V. K. Murty, Fourier coefficients of forms of CM-type, Indian Journal of Pure and Applied Mathematics, October 2014, Volume 45, Issue 5, pp 747-758.
  81. A. Laradji and A. Umar, "Combinatorial Results for Semigroups of Order-Decreasing Partial Transformations", J. Integer Sequences, Volume 7, 2004, Article 04.3.8.
  82. Laradji, A.; Umar, A. Combinatorial results for semigroups of order-preserving partial transformations. J. Algebra 278 (2004), no. 1, 342-359.
  83. Laradji, A.; Umar, A. Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum 72 (2006), no. 1, 51-62.
  84. A. Laradji and A. Umar, Combinatorial Results for the Symmetric Inverse Semigroup, Semigroup Forum, Volume 75, Number 1 / September, 2007.
  85. Laradji, A.; Umar, A. Some combinatorial properties of the symmetric monoid. Internat. J. Algebra Comput. 21 (2011), no. 6, 857-865.
  86. A. Laradji and A. Umar, Further combinatorial properties of the symmetric inverse semigroup, http://www.ibg.uu.se/digitalAssets/121/121877_poster1.pdf, 2012.
  87. A. Laradji and A. Umar, Lattice Paths and Order-preserving Partial Transformations, arXiv preprint arXiv:1304.7574, 2013
  88. Laradji, Abdallah; Umar, Abdullahi On the number of subpermutations with fixed orbit size. Ars Combin. 109 (2013), 447-460.
  89. A. Laradji, A. Umar, Combinatorial results for semigroups of order-preserving or order-reversing subpermutations, Journal of Difference Equations and Applications, Volume 21, Issue 3, 2015.
  90. P. J. Larcombe and E. J. Fennessey, Conditions governing cross-family member equality in a particular class of polynomial families, Fib. Q., 52 (2014), 349-356.
  91. Peter J. Larcombe, Daniel R. French, On the “Other” Catalan Numbers: A Historical Formulation Re-Examined, Congressus Numerantium, 143 (2000), 33-64; https://www.researchgate.net/profile/Peter_Larcombe/publication/268646122_On_the_other_Catalan_numbers_A_historical_formulation_re-examined/links/583c19d108ae502a85e386d7.pdf
  92. Peter J. Larcombe, Julius Fergy T. Rabago, Eric J. Fennessey, On two derivative sequences from scaled geometric mean sequence terms, Palestine Journal of Mathematics (2018) Vol. 7(2), 397-405. PDF. (A001045, A045883)
  93. J. F. J. Laros, Numeration-automatic sequences (2006), arXiv:cs/0605076.
  94. Daniel Larsen, Focusing Sequences and Self-Similarity, Preprint, 2019
  95. M. E. Larsen, The eternal triangle - a history of a counting problem, College Math. J., 20 (1989), 370-392.
  96. Morten Larsen, Petar Popovski and Soren Andersen, Cooperative Communication with Multiple Description Coding, in Cooperation in Wireless Networks: Principles and Applications, Springer-Verlag.
  97. Jean A. Larson, doi:10.1007/s00493-008-2148-9 Counting canonical partitions in the random graph, Combinatorica 28 (6) (2008) 659-678
  98. J. M. Larson, Cheating Because They Can: Social Networks and Norm Violators, PDF, 2014.
  99. U. Larsson, Impartial Games and Recursive Functions
  100. U. Larsson, N. Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
  101. Urban Larsson, Simon Rubinstein-Salzedo, Aaron N. Siegel, Memgames, arXiv:1912.10517 [math.CO], 2019. (A131469)
  102. Larry LaRue, Happy 12-13-14, everyone! Saturday is the latest sequential date that humans like to celebrate, Tacoma News Tribune, Dec 12 2014
  103. M. Latapy, Partitions of an Integer into Powers, Discrete Mathematics and Theoretical Computer Science special issue, Proceedings of Discrete Models - Combinatorics, Computation and Geometry 2001 (DM-CCG'01). (ps.gz, pdf )
  104. G. Latouche, P. G. Taylor, A stochastic fluid model for an ad hoc mobile network, Queueing Syst. 63, No. 1-4, 109-129 (2009), doi:10.1007/s11134-009-9153-6
  105. Robert Laugwitz and Vladimir Retakh, Algebras of Quasi-Plücker Coordinates are Koszul, arXiv:1703.08747 [math.RA], 2017.
  106. Bernard J. Laurenzi, Special values of the Lommel functions and associated integrals, arXiv:1901.03384 [math.CA], 2019. (A189368)
  107. S. Laurin, Organizing center for the bifurcation analysis of a generalized Gauss model with prey harvesting and Holling response function of type III, Journal of Differential Equations, 2011
  108. Steffen Lauritzen, Alessandro Rinaldo, Kayvan Sadeghi, On Exchangeability in Network Models, arXiv:1709.03885 [math.ST], 2017.
  109. Steffen Lauritzen, Alessandro Rinaldo, Kayvan Sadeghi, Random Networks, Graphical Models, and Exchangeability, arXiv:1701.08420, 2017.
  110. R. Lauterbach, Equivariant Bifurcation and Absolute Irreducibility in R^8: A Contribution to Ize Conjecture and Related Bifurcations, Journal of Dynamics and Differential Equations, 2014; doi:10.1007/s10884-014-9402-1
  111. Shirley Law, Hopf Algebra of Sashes, in FPSAC 2014, Chicago, USA; Discrete Mathematics and Theoretical Computer Science (DMTCS) Proceedings, 2014, 621-632; http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewFile/dmAT0159/4536.
  112. Steve Lawford, Yll Mehmeti, Cliques and a new measure of clustering: with application to U.S. domestic airlines, arXiv:1806.05866 [cs.SI], 2018. (A000055, A161680)
  113. Lawrence, Jim. "Dual-Antiprisms and Partitions of Powers of 2 into Powers of 2." Discrete & Computational Geometry, Vol. 16 (2019): 465-478. See page 466. doi:10.1007/s00454-019-00070-5
  114. Wayne Lawton, Refinable functions with PV dilations, arXiv preprint arXiv:1605.06195, 2016
  115. John W. Layman, "Some Properties of a Certain Nonaveraging Sequence", J. Integer Sequences, Volume 2, 1999, Article 99.1.3.
  116. John W. Layman, "The Hankel Transform and Some of its Properties", J. Integer Sequences, Volume 4, 2001, Article 01.1.5.
  117. G. Le Caer, A New Family of Solvable Pearson-Dirichlet Random Walks, Journal of Statistical Physics, Volume 144, Number 1, 23-45, doi:10.1007/s10955-011-0245-4.
  118. Mark R. Leach, The Internet Database of Periodic Tables, http://www.meta-synthesis.com/webbook/35_pt/pt_database.php/38_binary/iupac.org/pt_database.php?Button=recent#top
  119. E. Lebensztayn, A large deviations principle for the Maki-Thompson rumour model, arXiv preprint arXiv:1411.5614, 2014
  120. J. Lebl, Addendum to Uniqueness of certain polynomials constant on a line, arXiv preprint arXiv:1302.1441, 2013
  121. Jiri Lebl and Daniel Lichtblau, Uniqueness of certain polynomials constant on a hyperplane (2008); arXiv:0808.0284
  122. A Ledda, G Achaz, T Wiehe, L Ferretti, Decomposing the site frequency spectrum: the impact of tree topology on neutrality tests, arXiv preprint arXiv:1510.06748, 2015.
  123. Catherine Lee, Minimum coprime graph labelings, arXiv:1907.12670 [math.CO], 2019. (A104272, A213273)
  124. Daeseok Lee and H.-K. Ju, An Extension of Hibi's palindromic theorem, arXiv preprint arXiv:1503.05658, 2015
  125. Jeong-Yup Lee, D Flom, SI Ben-Abraham, Multidimensional period doubling structures, Acta Crystallographica Section A: Foundations, (2016). A72, 391-394; doi:10.1107/S2053273316004897
  126. Jeong-Yup Lee, Dong-il Lee, Sungsoon Kim, Gröbner-Shirshov bases for Temperley-Lieb algebras of the complex reflection group of type G(d,1,n), arXiv:1808.06523 [math.RA], 2018. (A009766)
  127. Kyu-Hwan Lee, Se-Jin Oh, Catalan triangle numbers and binomial coefficients, arXiv preprint arXiv:1601.06685, 2016
  128. Seung-Hoon Lee, Mario Gerla, Hugo Krawczyk, Kang-Won Lee and Elizabeth A. Quaglia, Performance Evaluation of Secure Network Coding using Homomorphic Signature, http://www.cs.ucla.edu/~shlee/papers/netcod_TECH.pdf
  129. Seungho Lee, Combinatorial Identities on Multinomial Coefficients and Graph Theory, Rose-Hulman Undergraduate Mathematics Journal (2019) Vol. 20, No. 2, Article 1. PDF (A001187)
  130. Dimitri Leemans, String C-group representations of almost simple groups: a survey, arXiv:1910.08843 [math.CO], 2019.
  131. S. Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, JIS 12 (2009) 09.5.5
  132. S. Legendre, Foldings and Meanders, arXiv preprint arXiv:1302.2025, 2013.
  133. Legendre, Stéphane; Paclet, Philippe On the permutations generated by cyclic shift. J. Integer Seq. 14 (2011), no. 3, Article 11.3.2, 14 pp.
  134. Lehmer, D. H. Some recursive sequences. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 15--30. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. MR0335426 (49 #208)
  135. M. Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent. Math. 136 (1999), no. 1, 157-207.
  136. F. Lehner, A noncrossing basis for noncommutative invariants of SL(2,C). J. Combin. Theory Ser. A 118 (2011), no. 1, 257-269.
  137. Siegfried Lehr, Jeffrey Shallit, John Tromp, On the vector space of the automatic reals, Theoretical Computer Science, Volume 163, Issues 1-2, 30 August 1996, Pages 193-210.
  138. A. V. Lelechenko, Parity of the number of primes in a given interval and algorithms of the sublinear summation, arXiv preprint arXiv:1305.1639, 2013
  139. A. V. Lelechenko, The Quest for the Generalized Perfect Numbers, in Theoretical and Applied Aspects of Cybernetics, TAAC 2014, Kiev; http://taac.org.ua/files/a2014/proceedings/UA-2-Andrew%20Lelechenko-440.pdf
  140. Lelechenko, A. V. (2014). “Exponential and infinitary divisors”. arΧiv:1405.7597. 
  141. Lemmen, E.; van Duivenbode, J.; Duarte, J. L.; Lomonova, E. A. (2015). “Flexible Multilevel Converters using 4-Switch Extended Commutation Cells”. IEEE J. Emg. Sel. Topics Power Elect 3: pp. 794–804. doi:10.1109/JESTPE.2015.2427913. . (A001045)
  142. Lemmermeyer, F. "Václav Šimerka: quadratic forms and factorization." LMS Journal of Computation and Mathematics 16 (2013): 118-129.
  143. Tamás Lengyel, "Asymptotics for Lacunary Sums of Binomial Coefficients and a Card Problem with Ranks", J. Integer Sequences, Volume 10, 2007, Article 07.7.2.
  144. T. Lengyel. On some 2-adic properties of a recurrence involving Stirling numbers. p-Adic Numbers Ultrametric Anal. Appl. 4, No. 3, 179-186 (2012). doi:10.1134/s2070046612030028
  145. Tamas Lengyel, On p-adic properties of the Stirling numbers of the first kind, Journal of Number Theory, 148 (2015) 73-94.
  146. Tamás Lengyel, A Note on a Permutation Statistic, J. Int. Seq., Vol. 22 (2019), Article 19.5.1. HTML (A000111)
  147. C. Lenormand, Compléments d'informatique fondamentale, mathématiques, combinatoires, linguistiques (Livre I/Livre II/Livre III), Département Informatique Université Paris 8, 2002 (see Préface ).
  148. Julien Leroy, Michel Rigo, Manon Stipulanti, Counting Subwords Occurrences in Base-b Expansions, arXiv:1705.10065 [math.CO], 2017.
  149. K. Leonard, Efficient shape modelint: epsilon-entropy, adaptive codign, and boundary curves vs Blum's medial axis, Int.J. Comp. Vis. 74 (2)(2007) 183-199, doi:10.1007/s11263-006-0010-3
  150. Paolo Leonetti, Carlo Sanna, On the greatest common divisor of n and the nth Fibonacci number, arXiv:1704.00151 [math.NT], 2017.
  151. Paul Leopardi, Proposal Dp130101924: new constructions for Hadamard matrices, (2013)
  152. Leopardi, Paul C. Constructions for Hadamard matrices using Clifford algebras, and their relation to amicability/anti-amicability graphs. Australas. J. Combin. 58 (2014), 214-248.
  153. Philippe Leroux, An equivalence of categories motivated by weighted directed graphs, arXiv:math-ph/0709.3453.
  154. Philippe Leroux, "A Simple Symmetry Generating Operads Related to Rooted Planar m-ary Trees and Polygonal Numbers", J. Integer Sequences, Volume 10, 2007, Article 07.4.7.
  155. Leroy, Julien, Rigo, M., & Stipulanti, M. (2017). Counting the number of non-zero coefficients in rows of generalized Pascal triangles. Discrete Mathematics, 340, 862-881.
  156. Julien Leroy, Michel Rigo, Manon Stipulanti, Counting subword occurrences in base-b expansions, Integers (2018) 18A, Article #A13. Abstract (A007306, A282720)
  157. Pierre Lescanne, "On counting untyped lambda terms", Theor. Comput. Sci. Volume 474, (2013) 80-97
  158. Pierre Lescanne, An exercise on streams: convergence acceleration, arXiv preprint arXiv:1312.4917, 2013
  159. P. Lescanne, Bolzmann samplers for random generation of lambda terms, arXiv preprint arXiv:1404.3875, 2014.
  160. Pierre Lescanne, Quantitative aspects of linear and affine closed lambda terms, arXiv:1702.03085 [cs.DM], 2017. Also in ACM Transactions on Computational Logic (TOCL 2019) Vol. 19, No. 2, Article No. 9. doi:10.1145/3173547 (A062980, A281270, A287045)
  161. Lesieur, C.; Vuillon, L. (2014). “(Chapter 13) From Tilings to Fibers - Bio-mathematical Aspects of Fold Plasticity”. Oligomerization of Chemical and Biological Compounds. pp. 395-422. doi:10.5772/58577. 
  162. Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22; doi:10.1186/1687-1847-2012-22
  163. Dusko Letic, Nenad Cakic, Branko Davidovic, Ivana Berkovic and Eleonora Desnica, Some certain properties of the generalized hypercubical functions, Advances in Difference Equations, 2011, 2011:60; http://www.advancesindifferenceequations.com/content/pdf/1687-1847-2011-60.pdf.
  164. Vladimir A. Letsko, Some new results on consecutive equidivisible integers, arXiv preprint arXiv:1510.07081, 2015.
  165. Matthew C. Lettington, Karl Michael Schmidt, Divisor Functions and the Number of Sum Systems, arXiv:1910.02455 [math.NT], 2019. (A131514, A273013)
  166. Ho-Hon Leung, Thotsaporn "Aek" Thanatipanonda, A Probabilistic Two-Pile Game, arXiv:1903.03274 [math.CO], 2019. (A001764, A006013)
  167. Paul LeVan, David Prier, "Improved Bounds on the Anti-Waring Number", Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.7. PDF
  168. Paul Levande, Two New Interpretations of the Fishburn Numbers and their Refined Generating Functions, arXiv:1006.3013.
  169. P. Levande, Fishburn diagrams, Fishburn numbers and their refined generating functions, Journal of Combinatorial Theory, Series A 120 (2013) 194-217.
  170. Viktor Levandovskyy, Christoph Koutschan and Oleksandr Motsak, On Two-generated Non-commutative Algebras Subject to the Affine Relation, arXiv:1108.1108, 2011.
  171. D. Levin, L. Pudwell, M. Riehl, A. Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014; http://www.etsu.edu/cas/math/pp2014/documents/talks/Riehl.pdf
  172. Paul Levrie, 103.21 Closed form evaluation of a class of improper integrals, The Mathematical Gazette (2019) Vol. 103, Issue 557, 323-328. doi:10.1017/mag.2019.68
  173. Giles Levy, Solutions of second order recurrence relations, PhD Thesis (2010) Florida State University
  174. Thierry Levy, Schur-Weyl duality and the heat kernel measure on the unitary group, Advances in Mathematics, Volume 218, Issue 2, 1 June 2008, Pages 537-575.
  175. Thierry Lévy, The Number of Prefixes of Minimal Factorisations of a Cycle, The Electronic Journal of Combinatorics, 23(3) (2016), #P3.35
  176. B. Lewis, Partitioning a set, Math. Gaz., 86 (2002), 51-58.
  177. Lewis, Joel Brewster Generating trees and pattern avoidance in alternating permutations. Electron. J. Combin. 19 (2012), no. 1, Paper 21, 21 pp.
  178. J. B. Lewis, Pattern Avoidance for Alternating Permutations and Reading Words of Tableaux, Ph. D. Dissertation, Department of Mathematics, MIT, 2012.
  179. Max Lewis and Victor Scharaschkin, K-LEHMER AND K-CARMICHAEL NUMBERS, Integers, 16 (2016), #A80.
  180. Richard P. Lewis, Simon P. Norton, On a problem raised by P.J. Cameron, Discrete Mathematics, Volume 138, Issues 1-3, 6 March 1995, Pages 315-318.
  181. J. V. Leyendekkers and A. G. Shannon, Modular Rings and the Integer 3, Notes on Number Theory & Discrete Mathematics, 17 (2011), 47-51; http://www.nntdm.net/papers/nntdm-17/NNTDM-17-2-47-51.pdf.
  182. J. V. Leyendekkers and A. G. Shannon, Pellian sequence relationships among pi, e, sqrt(2), Notes on Number Theory and Discrete Mathematics, Vol. 18, 2012, No. 2, 58-62; http://www.nntdm.net/papers/nntdm-18/NNTDM-18-2-58-62.pdf.
  183. J.V. Leyendekkers and A.G. Shannon, The odd-number sequence: squares and sums, International Journal of Mathematical Education in Science and Technology, doi:10.1080/0020739X.2015.1044042, 7p.
  184. J. V. Leyendekkers, A. G. Shannon, Analysis of Primes Using Right-End-Digits and Integer Structure, NNTDM 14 (2008), 3, 1-10; http://www.nntdm.net/papers/nntdm-14/NNTDM-14-3-01-10.pdf
  185. J. V. Leyendekkers, A. G. Shannon, Landau's Fourth problem, Notes on Number Theory and Discrete Mathematics. Vol. 22, 2016, No. 4, 73–77.
  186. Boyu Li, Asymptotic Distributions for Block Statistics on Non-crossing Partitions, Master's Thesis, Univ. Waterloo, 2013; https://uwspace.uwaterloo.ca/bitstream/handle/10012/8179/Boyu_Li.pdf?sequence=1
  187. Chunlei LI, Nian LI and Matthew G. PARKER, Complementary Sequence Pairs of Types II and III, http://www.ii.uib.no/~matthew/Pairs.pdf; IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Vol. E95-A, No. 11, pp. 1819-1826, 2012.
  188. Gang Li, Generation of rooted trees and free trees, MSc thesis, U. Victoria (1996)
  189. Huilan Li and Trueman MacHenry, Permanents and determinants, weighted isobaric polynomials and integral sequences, PDF preprint, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5
  190. Li, Huilan; MacHenry, Trueman The convolution ring of arithmetic functions and symmetric polynomials. Rocky Mountain J. Math. 43 (2013), no. 4, 1227-1259.
  191. Huaien Li and David C. Torney. A complete system of orthogonal step functions. Proc. Amer. Math. Soc. 132 (2004) 3491-3502.
  192. Ji Li, Combinatorial Logarithm and Point-Determining Cographs, Electronic Journal of Combinatorics, 19 (3) (2012), #P8.
  193. Jun Li, Golden Section Transform: Golden Mean of Golden Ratios, 2015; http://goldensectiontransform.org/image/Golden-Section-Transform_Golden-Mean-of-Golden-Ratios-Preview.pdf
  194. Min Li, Lawrence Ong, Sarah J. Johnson, Multi-Sender Index Coding for Collaborative Broadcasting: A Rank-Minimization Approach, IEEE Transactions on Communications (2018). doi:10.1109/TCOMM.2018.2877392
  195. Nelson Y. Li, Toufik Mansour, An identity involving Narayana numbers, European Journal of Combinatorics, Volume 29, Issue 3, April 2008, Pages 672-675.
  196. Li, Qingguo; Guo, Lankun doi:10.1016/j.ins.2013.03.032 Formal query systems on contexts and a representation of algebraic lattices. Inf. Sci. 239, 72-84 (2013).
  197. Runqiao Li, Andrew Y. Z. Wang, Composition analogues of Beck's conjectures on partitions, European Journal of Combinatorics (2019) Vol. 81, 210-220. doi:10.1016/j.ejc.2019.06.005
  198. Runqiao Li, Andrew Y. Z. Wang, Generalization of two problems of George Beck, Discrete Mathematics (2020) Vol. 343, Issue 5, Article No. 111805. doi:10.1016/j.disc.2019.111805
  199. Li Wenwei, Estimation of the Partition Number: After Hardy and Ramanujan, arXiv preprint arXiv:1612.05526, 2016
  200. Li Wenwei, On the Number of Conjugate Classes of Derangements, arXiv preprint arXiv:1612.08186, 2016
  201. Xiaoquin Li, Verifying Two Conjectures on Generalized Elite Primes, JIS 12 (2009) 09.4.7
  202. XiKun Li, JunLi Li, Bin Liu and CongFeng Qiao, The parametric symmetry and numbers of the entangled class of 2 × M × N system, SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY, Volume 54, Number 8, 1471-1475, doi:10.1007/s11433-011-4395-9
  203. X. Li, D. S. Stones, H. Wang, H. Deng, X. Liu and G, Wang, NetMODE: Network Motif Detection without Nauty, PLoS ONE 7(12): e50093. doi:10.1371/journal.pone.0050093.
  204. Weixiong Li, A note on the Bateman-Horn conjecture, Journal of Number Theory (2019). doi:10.1016/j.jnt.2019.07.025
  205. Yanbin Li, Qunying Liao, A class of new near-perfect numbers, J. Korean Math. Soc. 52 (2015), No. 4, pp. 751–763, doi:10.4134/JKMS.2015.52.4.751
  206. Yongbin Li, Junwei Zi, Yan Liu, Xiaojun Zhang, A note of values of minors for Hadamard matrices, arXiv:1905.04662 [math.CO], 2019. (A003432)
  207. Huyile Liang, Jeffrey Remmel, Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017. (A000108, A000984, A001003, A001850, A001861, A002212, A003645, A004211, A006318, A007564, A024175, A026671, A039599, A047891, A055882, A059231, A059304, A060693, A064062, A084773, A091965, A151374, A172094)
  208. P. Libbrecht, L. Goosen, Using ICTs to Facilitate Multilingual Mathematics Teaching and Learning, http://direct.hoplahup.net/copy_left/Using-ICTs-for-Multilingual-Mathematics-Teaching-and-Learning.pdf, 2014.
  209. Mark Libermann, Music of the (binary) trees, Language Log, http://languagelog.ldc.upenn.edu/nll/?p=3322#more-3322
  210. Leo Liberti, Carlile Lavor, "Discretizability" in Euclidean Distance Geometry, pp. 31-42, Springer Undergraduate Texts in Mathematics and Technology, 2017. doi:10.1007/978-3-319-60792-4_4
  211. Jacob Liddy, An algorithm to determine all odd primitive abundant numbers with d divisors, Honors Research Projects (2018), 728. PDF. (A006038)
  212. Dirk Liebhold, G Nebe, A Vazquez-Castro, Network coding and spherical buildings - arXiv preprint arXiv:1612.07177, 2016
  213. Dirk Liebhold, Gabriele Nebe, Angeles Vazquez-Castro, Network coding with flags, To appear in Designs, Codes, Cryptography, 2017.
  214. C. Lienkaemper, When do neural codes come from convex or good covers?, http://www.math.tamu.edu/REU/results/REU_2015/lienreport.pdf, 2015.
  215. C Lienkaemper, A Shiu, Z Woodstock, Obstructions to convexity in neural codes, Preprint 2015; http://www.math.tamu.edu/~annejls/papers/obstructions-convexity-neural.pdf
  216. Lievens, S.; Stoilova, N. I.; Van der Jeugt, J. Harmonic oscillators coupled by springs: discrete solutions as a Wigner quantum system. J. Math. Phys. 47 (2006), no. 11, 113504, 23 pp.
  217. Thomas M. Liggett, Wenpin Tang, One-dependent hard-core processes and colorings of the star graph, arXiv:1804.06877 [math.PR], 2018. (A001998)
  218. Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, 702 pages.
  219. "Like2do.com", web page retrieved March 2018, Gray Code.
  220. Benny Lim, Prime Numbers Generated From Highly Composite Numbers, Parabola (2018) Vol. 54, Issue 3. Abstract (A000668, A002182, A014545, A057704)
  221. Lek-Heng Lim, Interview of Shmuel Friedland for the ILAS, 2017.
  222. A. W. Lin, S. Zhou, A linear-time algorithm for the orbit problem over cyclic groups, http://homepages.inf.ed.ac.uk/v1awidja/papers/concur14.pdf, 2014.
  223. Xi Lin, Dirk Schmelter, Sadaf Imanian, Horst Hintze-Bruening, Hierarchically Ordered α-Zirconium Phosphate Platelets in Aqueous Phase with Empty Liquid, Scientific Reports (2019) Vol. 9, Article No. 16389. doi:10.1038/s41598-019-51934-y (A093766)
  224. Yen-Chi Roger Lin, Asymptotic Formula for Symmetric Involutions, arXiv preprint arXiv:1310.0988, 2013.
  225. Lin, Yiling; Mishima, Miwako; Satoh, Junya; Jimbo, Masakazu Optimal equi-difference conflict-avoiding codes of odd length and weight three. Finite Fields Appl. 26 (2014), 49-68.
  226. Zhicong Lin, Restricted inversion sequences and enhanced 3-noncrossing partitions, arXiv:1706.07213 [math.CO], 2017.
  227. Zhicong Lin, Patterns of relation triples in inversion and ascent sequences, Theoretical Computer Science (2020) Vol. 804, 115-125. doi:10.1016/j.tcs.2019.11.007
  228. Zhicong Lin, D Kim, A sextuple equidistribution arising in Pattern Avoidance, arXiv preprint arXiv:1612.02964, 2016.
  229. Zhicong Lin, Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672. doi:10.1016/j.amc.2019.124672 (A000079, A000110, A022493, A047970, A091768, A098569, A102038, A108304, A113227, A117106, A249562)
  230. ZHICONG LIN AND JIANG ZENG, On the number of congruence classes of paths, Arxiv preprint arXiv:1112.4026, 2011.
  231. Zhiwei Lin, H Wang, CH Elzinga, Concordance and the Smallest Covering Set of Preference Orderings, arXiv preprint arXiv:1609.04722, 2016.
  232. L. Lindroos, A. Sills and H. Wang, Odd fibbinary numbers and the golden ratio, Fib. Q., 52 (2014), 61-65.
  233. Jim Lindsay, Toufik Mansour and Mark Shattuck, A new combinatorial interpretation of a g-analogue of the Lah numbers, Journal of Combinatorics, Volume 2, Number 2, 245-264, 2011; http://intlpress.com/JOC/p/2011/JOC-2-2-a4-Lindsay.pdf
  234. Nathan Lindzey, Matchings and Representation Theory, Ph.D. thesis, combinatorics and optimization, University of Waterloo, Ontario, Canada, 2018. PDF
  235. Steven Linton, James Propp, Tom Roby, Julian West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, Journal of Integer Sequences, Vol. 15 (2012), #12.9.1.
  236. S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (2), (1999), 255-266.
  237. Svante Linusson, Samu Potka, New properties of the Edelman-Greene bijection, arXiv:1804.10034 [math.CO], 2018. (A003121)
  238. Luke Lippstreu, Jorge Mago, Marcus Spradlin, Anastasia Volovich, Weak Separation, Positivity and Extremal Yangian Invariants, arXiv:1906.11034 [hep-th], 2019. (A054365) We are grateful to A. Schreiber for collaboration on [28] which inspired this project andfor finding [the OEIS] based on the first few entries of Tab. 1.
  239. Zsuzsanna Lipták, Open problems on prefix normal words, University of Verona, Italy, 2018. PDF, also in Dagstuhl Reports (2018) Vol. 8, Issue 7, 59-61. Abstract (A194850, A238109, A238110)
  240. Liskiewicz, Maciej; Ogihara, Mitsunori; Toda, Seinosuke, The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes. Theoret. Comput. Sci. 304 (2003), no. 1-3, 129-156.
  241. V. A. Liskovets, Enumerative identities for circulat graphs of special prime order, Discr. Math, Proc. Inst. Math., NAS of Belarus 8 (2001) 68-75
  242. Valery A. Liskovets, "Some Easily Derivable Integer Sequences", J. Integer Sequences, Volume 3, 2000, Article 00.2.2.
  243. Valery A. Liskovets, "A Note on the Total Number of Double Eulerian Circuits in Multigraphs", J. Integer Sequences, Volume 5, 2002, Article 02.2.5.
  244. V. A. Liskovets, arXiv:math.CO/0104131, Some identities for enumerators of circulant graphs, J. of Algebr. Combin., v. 18:3 (2003), 189-209.
  245. V. A. Liskovets, doi:10.1016/j.dam.2005.06.009, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
  246. V. A. Liskovets and A. D. Mednykh, On the number of connected and disconnected coverings over a manifold, ARS MATHEMATICA CONTEMPORANEA, 2 (2009) 181-189.
  247. V. A. Liskovets and T. R. Walsh, doi:10.1016/j.aam.2005.03.006, Counting unrooted maps on the plane, Advances in Applied Math. 36, No.4 (2006), 364-387.
  248. Lisonek, Petr, Combinatorial families enumerated by quasi-polynomials. J. Combin. Theory Ser. A 114 (2007), no. 4, 619-630.
  249. Nanna Holmgaard List, Timothé Romain Léo Melin, Martin van Horn, Trond Saue, Beyond the electric-dipole approximation in simulations of X-ray absorption spectroscopy: Lessons from relativistic theory, arXiv:2001.10738 [physics.chem-ph], 2020. (A005043)
  250. Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019. (A000027, A000108, A001002, A001263, A001700, A003168, A006013, A006632, A024492, A025748, A025749, A025750, A025751, A025752, A025753, A025754, A025755, A027307, A034171, A034255, A034687, A034789, A034904, A034996, A035097, A035323, A048779, A049140, A055392, A063018, A063019, A063020, A063033, A085614, A097188, A103779, A118971, A121988, A129442, A130564, A130565, A158826, A158827, A158828, A192945, A192946, A214372, A214692, A217361, A217362, A219535, A219536, A228966, A231554, A234466, A234513, A234573, A235340, A236339, A249924, A250885, A250886, A250887, A250888, A276310, A276314, A276315, A276316, A295541)
  251. Litsyn, S.; Shevelev, V. (2007). “On factorization of integers with restrictions on the exponents”. INTEGERS: El. J. Comb. Numb. Theory 7: p. A33. 
  252. Andy Liu, Is Parallelism an Equivalence Relation?, The College Mathematics Journal, 42 (2011), p. 372; http://www.jstor.org/pss/10.4169/college.math.j.42.5.372.
  253. Hong Liu, Péter Pál Pach, Richárd Palincza, The number of maximum primitive sets of integers. arXiv:1805.06341 [math.CO], 2018. (A174094)
  254. Ji-Cai Liu, Long Li, and Su-Dan Wang, Some congruences on Delannoy numbers and Schröder numbers, Int. J. Number Theory (2018), pp 1-7, doi:10.1142/S1793042118501221.
  255. Jia Liu, Performance analysis of systematic linear codes over AWGN channels, Published in: RFID Technology and Applications (RFID-TA), 2016 IEEE International Conference on, 2016; doi:10.1109/RFID-TA.2016.7750727
  256. Jia Liu, L Lalouat, E Drouard, R Orobtchouk, Binary coded patterns for photon control using necklace problem concept, Optics Express Vol. 24, Issue 2, pp. 1133-1142 (2016) doi:10.1364/OE.24.001133
  257. Jin-Yi Liu, On a problem of team hiring, hal-02485153, Computer Science [cs], 2020. Abstract (A308729, A308860)
  258. Li Liu and Yi Wang, On the log-convexity of combinatorial sequences (2006), arXiv:math/0602672; Advances in Applied Mathematics, Volume 39, Issue 4, October 2007, Pages 453-476.
  259. Lily L. Liu, Positivity of three-term recurrence sequences, Electronic J. Combinatorics, 17 (2010), #R57.
  260. Lintao Liu, Xuehu Yan, Yuliang Lu, and Huaixi Wang, 2-threshold Ideal Secret Sharing Schemes Can Be Uniquely Modeled by Latin Squares, National University of Defense Technology, Hefei, China, (2019). PDF (A002860)
  261. Mengmeng Liu, Andrew Yezhou Wang, The Number of Designated Parts in Compositions with Restricted Parts, J. Int. Seq., Vol. 23 (2020), Article 20.1.8. HTML (A006367, A010049, A029907, A102702, A239342)
  262. Minglei Liu, Ce Zhu, Index assignment for 3-description lattice vector quantization based on A2 lattice, Signal Processing, Volume 88, Issue 11, November 2008, Pages 2754-2763.
  263. Ricky I. Liu, K Mészáros, AH Morales, Flow polytopes and the space of diagonal harmonics, arXiv preprint arXiv:1610.08370, 2016.
  264. Rui Liu and Feng-Zhen Zhao, On the Sums of Reciprocal Hyperfibonacci Numbers and Hyperlucas Numbers, Journal of Integer Sequences, Vol. 15 (2012), #12.4.5.
  265. Rui-Li Liu, Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7. HTML (A000166, A000681, A001205, A001499, A002135, A002137, A002212, A002895, A005189, A005572, A006595)
  266. Sh-Chung Liu, Jun Ma and Yeong-Nan Yeh, doi:10.1111/j.1467-9590.2008.00415.x, Dyck Paths with Peak- and Valley-Avoiding Sets], Studies in Appl. Math. 121 (2008) 263-289.
  267. Shao-Hua Liu, The operators F_i on permutations, 132-avoiding permutations and inversions, Discrete Math., 342 (2019), 2402-2414.
  268. XIAOJUN LIU, MOTOHICO MULASE AND ADAM SORKIN, Quantum curves for simple Hurwitz numbers of an arbitrary base curve, PDF, 2013.
  269. Yusen Liu, Fangyuan He, Haodi Zhang, Guozheng Rao,Zhiyong Feng, Yi Zhou, How Well Do Machines Perform on IQ tests: a Comparison Study on a Large-Scale Dataset, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), 6110-6116. doi:10.24963/ijcai.2019/846 Also, there are a number of datasets that are highly related to IQ test questions as well. For instance, the Online Encyclopedia of Integer Sequences (OEIS) contains over a quarter-million ... math sequences.
  270. Zhengwei Liu, William Norledge, Adrian Ocneanu, The adjoint braid arrangement as a combinatorial Lie algebra via the Steinmann relations, arXiv:1901.03243 [math.CO], 2019. (A034997)
  271. E. Keith Lloyd, The standard deviation of 1, 2, ..., n - Pell's equation and rational triangles, Math. Gaz., July 1997, 231-243.
  272. E. Keith Lloyd, Letter to the Editor, Mathematical Gazette, Vol. 83, Issue 49, March 1999, p. 134. doi:10.1017/S0025557200208255
  273. Seth Lloyd, Reevu Maity, Efficient implementation of unitary transformations, arXiv:1901.03431 [quant-ph], 2019. Page 8: A standard reference for free Lie algebras is [the OEIS].’’
  274. Y.-H. Lo, H.-L. Fu, Y.-H. Lin, Weighted maximum matchings and optimal equi-difference conflict-avoiding codes, Designs, Codes and Cryptography, 2014
  275. Yuan-Hsun Lo, Yijin Zhang, Yi Chen, Hung-Lin Fu, Wing Shing Wong, The Global Packing Number of a Fat-Tree Network, IEEE Transactions on Information Theory, Vol. 63, No. 8, August 2017. doi:10.1109/TIT.2017.2710184
  276. Giovanni Lo Bianco, Xavier Lorca, Charlotte Truchet, Estimating the Number of Solutions of Cardinality Constraints Through "range" and "roots" Decompositions, International Conference on Principles and Practice of Constraint Programming (CP 2019): Principles and Practice of Constraint Programming, Lecture Notes in Computer Science Vol. 11802, 317-332. doi:10.1007/978-3-030-30048-7_19
  277. Loday, Jean-Louis, Inversion of integral series enumerating planar trees. Sém. Lothar. Combin. 53 (2004/06), Art. B53d, 16 pp.
  278. Jean-Louis Loday, On the algebra of quasi-shuffles, arXiv preprint arXiv:math/0506498, 2005.
  279. D. E. Loeb, The World of Generating Functions and Umbral Calculus, in Gian-Carlo Rota on Combinatorics: Introductory Papers and Commentaries, Volume 1, editor: Joseph P. S. Kung, Birkhauser (1995) 201-216.
  280. Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017.
  281. Andrew Lohr, Summations of Linear Recurrent Sequences, arXiv preprint arXiv:1710.11074, 2017.
  282. Andrew Lohr, Several topics in experimental mathematics, PhD Dissertation, Math. Dept., Rutgers, April 2018 arXiv:1805.00076 [math.CO]. (A000435, A002426, A005789, A298591)
  283. Andrew Lohr, Doron Zeilberger, On the limiting distributions of the total height on families of trees, Integers (2018) 18, Article #A32. Abstract (A000435)
  284. S. Loktev, Weight Multiplicity Polynomials of multi-variable Weyl Modules, Moscow Math. Journal, Vol. 10 (No. 1, 2010), pp. 215-229; arXiv:0806.0170
  285. H. A. Lonnemo, A Method for Complete Decomposition of a Multiple Tone Signal using a DFT, Proceedings of the World Congress on Engineering 2012, Vol. II, WCE 2012, July 4-6, 2012, London, U.K., http://www.iaeng.org/publication/WCE2012/WCE2012_pp1219-1225.pdf.
  286. David Lonoff and Jonah Ostroff, Symmetric Permutations Avoiding Two Patterns, Annals of Combinatorics 14 (1) pp. 143-158, Springer, 2010; http://www.math.upenn.edu/~lonoff/pdfs/spatp.pdf.
  287. P. A. Loomis, An Introduction to Digit Product Sequences, Journal of Recreational Mathematics 32 (2003-2004), 147-151.
  288. P. A. Loomis, New families of solitary numbers, J. Algebra and Applications, 14 (No. 9, 2015), #1540004 (6 pages).
  289. Paul Loomis, Michael Plytage and John Polhill, Summing up the Euler 'phi' function, The College Mathematics Journal, vol. 39 (#1), pp. 34-42.
  290. Andreas Loos, Was finden Sie schöner – 2,3,5,7,11 oder 0,1,1,2,3,5? [What do you find more beautiful - 2,3,5,7,11 or 0,1,1,2,3,5?], Zeit Online, Germany, March 15 2018; http://www.zeit.de/wissen/2018-03/datenbank-mathematik-digital-jubilaeum-zahlenfolgen
  291. Viktor Lopatkin, Pasha Zusmanovich, Commutative Lie algebras and commutative cohomology in characteristic 2, arXiv:1907.03690 [math.KT], 2019. (A052944)
  292. Antonio Vera López, Luis Martínez, Antonio Vera Pérez, Beatriz Vera Pérez, Olga Basova, Combinatorics related to Higman's conjecture I: Parallelogramic digraphs and dispositions, Linear Algebra and its Applications, Volume 530, 1 October 2017, p. 414-444. doi:10.1016/j.laa.2017.05.027
  293. Nacho López, H Pérez-Rosés, J Pujolas, A Moore-like bound for mixed abelian Cayley graphs, Preprint, 2016; http://discretemath.upc.edu/jmda16/wp-content/uploads/2015/09/JMDA2016_paper_32.pdf; also Electronic Notes in Discrete Mathematics, Volume 54, October 2016, Pages 145-150; doi:10.1016/j.endm.2016.09.026
  294. S. C. López, F. A. Muntaner-Batle and M. Rius-Font, The Jumping Knight and Other (Super) Edge-Magic Constructions, Mediterranean Journal of Mathematics, Nov. 2013; doi:10.1007/s00009-013-0360-3.
  295. Janathan Loranger, Warm dark matter collapse: real space analysis methods, Thesis submitted in partial fulfillment of the requirements for the degree of master of science, The University of Guelph, 2013, http://elk.library.ubc.ca/bitstream/handle/2429/45432/ubc_2014_spring_loranger_jonathan.pdf?sequence=3.
  296. Paweł Lorek, Piotr Markowski, Conditional gambler's ruin problem with arbitrary winning and losing probabilities with applications, arXiv:1812.00687 [math.PR], 2018. (A011973)
  297. Paweł Lorek, Piotr Markowski, Absorption time and absorption probabilities for a family of multidimensional gambler models, arXiv:1812.00690 [math.PR], 2018. (A303872)
  298. Piotr Lorenc, Jakub Jan Ludew, Mariusz Pleszczyński, Alicja Samulewicz, Roman Wituła, Iterated integrals of Faulhaber polynomials and some properties of their roots, 2018. PDF (A251926)
  299. R Lorentz, S Tringali, CH Yan, Generalized Goncarov polynomials, arXiv preprint arXiv:1511.04039, 2015.
  300. Dino Lorenzini, Z Xiang, Integral points on variable separated curves, Preprint 2016; http://alpha.math.uga.edu/~lorenz/IntegralPoints.pdf
  301. Pavel Loskot and Norman C. Beaulieu, On monotonicity of the hypersphere volume and area, Journal of Geometry, Volume 87, Numbers 1-2 / November, 2007.
  302. Guy Louchard and Helmut Prodinger, "The Largest Missing Value in a Composition of an Integer and Some Allouche-Shallit-type Identities", Journal of Integer Sequences, Vol. 16 (2013), #13.2.2.
  303. W. P. Lougee and J. K. MacKie-Mason, Economics and Usage of Digital Libraries: Byting the Bullet, http://quod.lib.umich.edu/s/spobooks/5621225.0001.001?rgn=main;view=fulltext.
  304. J. Loughry, J. I. van Hemert and L. Schoofs. Efficiently Enumerating the Subsets of a Set, preprint.
  305. Loureiro, Ana F.; Maroni, P. Quadratic decomposition of Laguerre polynomials via lowering operators. J. Approx. Theory 163 (2011), no. 7, 888-903.
  306. Ana Filipa Loureiro and Pascal Maroni, Polynomial sequences associated with the classical linear functionals, Numerical Algorithms, June 2012, Volume 60, Issue 2, pp 297-314.
  307. Ana F. Loureiro and S. Yakubovich, Central factorials under the Kontorovich-Lebedev transform of polynomials, Integral Transforms and Special Functions, 2012, doi:10.1080/10652469.2012.672325
  308. Antonio Molina Lovett, Jeffrey Shallit, Optimal Regular Expressions for Permutations, arXiv:1812.06347 [cs.FL], 2018. (A320460)
  309. Richard M. Low and Ardak Kapbasov, Non-Attacking Bishop and King Positions on Regular and Cylindrical Chessboards, Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.1.
  310. Val Lowndes, Stuart Berry, Chris Parkes, Ovidiu Bagdasar, Nicolae Popovici, Further Use of Heuristic Methods, In: Berry S., Lowndes V., Trovati M. (eds) Guide to Computational Modelling for Decision Processes. Simulation Foundations, Methods and Applications. doi:10.1007/978-3-319-55417-4_7
  311. David Lowry-Duda, A short note on gaps between powers of consecutive primes, arXiv:1709.07847 [math.NT], 2017.
  312. Dawei Lu and Zexi Song, Some new continued fraction estimates of the Somos' quadratic recurrence constant, Journal of Number Theory, Volume 155, October 2015, Pages 36–45. (A052129, A112302, A114124, A116603)
  313. Dawei Lu, Xiaoguang Wang, Ruiqing Xu, Some New Exponential-Function Estimates of the Somos’ Quadratic Recurrence Constant, Results in Mathematics (2019) Vol. 74, No. 1, 6. doi:10.1007/s00025-018-0928-0 (A052129, A112302, A114124, A116603)
  314. Q. Lu, W. Zheng and Z. Zheng, On the distribution of Jacobi sums, arXiv preprint arXiv:1305.3405, 2013.
  315. Zhentao Lu, Elementary proofs of generalized continued fraction formulae for E, arXiv:1907.05563 [math.NT], 2019. Computer-aided verification of generalized continued fraction formulae. … Step 2. Get the recursive formulae of A_n and B_n using [the OEIS]. Step 3. Compute the first few terms of A_n and B_n and using WolframAlpha and OEIS to guess a closed-form of them. …
  316. Luca, Florian, Prime factors of Motzkin numbers. Ars Combin. 80 (2006), 87-96.
  317. F. Luca, On the sum of the first n primes being a square, Lithuanian Mathematical Journal, Volume 47, Number 3 / July, 2007.
  318. F. Luca, D. Marques, Perfect powers in the summatory function of the power tower, J. Theor. Nombr. Bordeaux 22 (3) (2010) 703-718 doi:10.5802/jtnb.740
  319. F. Luca, D. Marques and P. Stanica, doi:10.1016/j.jnt.2009.07.015 On the spacings between C-nomial coefficients, J. Num. Theory 130 (2010) 82-100
  320. F. Luca, A. O. Munagi, The Number Of Permutations Which Form Arithmetic Progressions Modulo m, Annals of the Alexandru Ioan Cuza University, 2014, doi:10.2478/aicu-2014-0053.
  321. F. Luca, A. Pizarro-Madariaga, C. Pomerance, On the counting function of irregular primes, PDF, 2014.
  322. Florian Luca and A. Srinivasan, Markov equation with Fibonacci components, Fib. Q., 56 (No. 2, 2018), 126-129.
  323. F. Luca, E. Tron, The Distribution of Self-Fibonacci Divisors, arXiv preprint arXiv:1410.2489, 2014
  324. Florian Luca and Juan Luis Varona, Multiperfect numbers on lines of the Pascal triangle, Journal of Number Theory, Volume 129, Issue 5, May 2009, Pages 1136-1148.
  325. Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419–427
  326. Giovanni Lucca, Circle chains inscribed in symmetrical lunes and integer sequences, Forum Geometricorum, Volume 17 (2017), p. 21-29.
  327. Giovanni Lucca, Chains of tangent circles inscribed in a triangle, Forum Geometricorum, Volume 17 (2017), p. 41-44.
  328. Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55. PDF (A006051, A008844, A046172, A055792, A055793, A055997, A081068, A171640, A247335)
  329. Giovanni Lucca, Integer Sequences and Circle Chains Inside a Tangential Quadrilateral, Sangaku Journal of Mathematics (SJM, 2018) Vol. 2, 31-40. PDF (A000302, A001019)
  330. Giovanni Lucca, Infinite Circle Chains in Between Two Internally Tangent Circles and Integer Sequences, International Journal of Geometry (2018) Vol. 7, 43-49. PDF (A000124, A002522, A002016, A104249, A143689, A005448, A058331, A084849, A130883, A001844, A116668, A140066, A134238, A192136, A005891, A056107, A056108, A056106, A056109, A056105, A003215, A140063, A140065, A100752, A069099, A053755, A054567, A054556, A054569, A054554, A033951, A054552, A006137, A276819, A038764, A080855, A064225, A140064, A081267, A117625, A212656, A172043, A145995, A190816, A136392, A085473, A080859)
  331. Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16. Abstract (A001519, A001653, A002315, A002878, A007805, A049629, A078922, A078988, A078989, A097314, A097315, A097726, A097727, A097729, A097730, A097732, A097733, A097735, A097736, A097738, A097739, A097741, A097742, A097766, A097767, A097769, A097770, A097772, A097773, A097775, A097776, A097783, A097834, A097835, A097837, A097838, A097840, A097841, A097842, A097843, A097845, A098244, A098246, A098247, A098249, A098250, A098252, A098253, A098255, A098256, A098258, A098259, A098261, A098262, A098291, A098292)
  332. Giovanni Lucca, Integer Sequences, Pythagorean Triplets and Circle Chains Inscribed Inside a Parabola, International Journal of Geometry (2019) Vol. 8, 22-31. PDF (A005408, A046092, A001844)
  333. J. M. Luck, On the frequencies of patterns of rises and falls, arXiv preprint arXiv:1309.7764, 2013
  334. JM Luck, A Mehta, Universality in survivor distributions: Characterising the winners of competitive dynamics, arXiv preprint arXiv:1511.04340, 2015
  335. David Luebke, Martin Reddy, Jonathan D. Cohen, Amitabh Varshney, Benjamin Watson, Robert Huebner, References, Level of Detail for 3D Graphics, 2003, Pages 349-369.
  336. M. A. Lujan Moreno, Object Oriented Linear Algebra, M. Phil. Thesis, Dept. Computer Science, University Of Manchester, 1999.
  337. M. A. Lujan Moreno, OoLaLa -- From Numerical Linear Algebra to Compiler Technology for Design Patterns, PhD thesis, Department of Computer Science, University of Manchester, 2002.
  338. Kristina Lund, Steven Schlicker and Patrick Sigmon, Fibonacci sequences and the space of compact sets, Involve, 1:2 (2008), pp. 159-165.
  339. S. Lundin, Young-Tablåer och mönsterundvikande, Masters thesis.
  340. P. H. Lundow, Enumeration of matchings in polygraphs, 1998.
  341. W. F. Lunnon, Bounds on low-deficiency number-wall depth of sequences, Preprint Mar 24 2018 (will soon appear on arXiv)
  342. G. A. Lunter, Bifurcations in Hamiltonian systems [Online Resource : computing singularities by Gröbner bases], 1999 (see stellingen).
  343. Qui-Ming Luo, Fourier expansions and integral representations for Genocchi Polynomials, JIS 12 (2009) 09.1.4.
  344. J.-G. Luque, L. Mignot and F. Nicart, Some Combinatorial Operators in Language Theory, Arxiv preprint arXiv:1205.3371, 2012
  345. J.-G. Luque and J.-Y. Thibon, arXiv:math.CO/0607254, Noncommutative Symmetric Functions Associated with a Code, Lazard Elimination and Witt Vectors, Discrete Math. Theor. Comput. Sci. 9 (2007), no. 2, 59-72.
  346. Peter Luschny, Counting with Partitions
  347. Peter Luschny, Stefan Wehmeier, arXiv:0909.1838, The lcm(1,2,...,n) as a product of sine values sampled over the points in Farey sequences.
  348. A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87.
  349. Enxhell Luzhnica, Mihnea Iancu, Michael Kohlhase, Importing the OEIS library into OMDoc, In: R. Bergmann, S. Görg, G. Müller (Eds.): Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB. Trier, Germany, 7.-9. October 2015, published at http://ceur-ws.org; Available from http://ceur-ws.org/Vol-1458/F13_CRC73_Luzhnica.pdf
  350. Enxhell Luzhnica, Michael Kohlhase, Formula Semantification and Automated Relation Finding in the On-Line Encyclopedia for Integer Sequences, In: Greuel GM., Koch T., Paule P., Sommese A. (eds) Mathematical Software – ICMS 2016. ICMS 2016. Lecture Notes in Computer Science, vol 9725. Springer; doi:10.1007/978-3-319-42432-3_60
  351. Lun Lv, Zhihong Liu, Some Identities Related to Restricted Lattice Paths, 2016 9th International Symposium on Computational Intelligence and Design (ISCID), pp. 338-340. doi:10.1109/ISCID.2016.1084
  352. Lun Lv and Sabrina X. M. Pang, Reduced Decompositions of Matchings, Electronic Journal of Combinatorics 18 (2011), #P107.
  353. Adrian Łydka, On some properties of the function of the number of relatively prime subsets of {1,2,...,n}, arXiv:1910.02418 [math.NT], 2019. (A085945)
  354. N. Lygeros, M. Mizony and P. Zimmermann, New ECM record, Perfection (Journal of the Pi Society), volume 1 number 202/2000.
  355. N. Lygeros, O. Rozier, A new solution to the equation tau(rho) == 0 (mod p), J. Int. Seq. 13 (2010) # 10.7.4.
  356. David W. Lyons and Scott N. Walck, Multiparty quantum states stabilized by the diagonal subgroup of the local unitary group (2008); arXiv:0808.2989

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.