This site is supported by donations to The OEIS Foundation.

CiteL

From OeisWiki
Jump to: navigation, search


"As always when confronted with a sequence of integers, it pays off to look at The On-Line Encyclopedia of Integer Sequences http://oeis.org ..." [W. Lanssens et al., 2014]

"We are grateful to A. Schreiber for collaboration on [28] which inspired this project and for finding [the OEIS] based on the first few entries of Table 1." [Luke Lippstreu et al., 2019]

"Also, there are a number of datasets that are highly related to IQ test questions as well. For instance, the Online Encyclopedia of Integer Sequences (OEIS) contains over a quarter-million ... math sequences." [Yusen Liu et al., 2019]

"... the appearance of the sequences of genera for a few small values of p in the [OEIS], which included generating functions for them that suggested immediately a nice and simple conjecture for all dimensions ..." [Santiago López de Medrano, 2020]

"Step 2. Get the recursive formulae of A_n and B_n using [the OEIS]. Step 3. Compute the first few terms of A_n and B_n and using WolframAlpha and OEIS to guess a closed-form of them." [Zhentao Lu, 2019]

"Without using Neil Sloane's OEIS this essay could have been written, but it would only have been half as much fun." [Peter H. N. Luschny, 2020]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with L.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Ross La Haye, Quasi-Sunflower Sperner Families and Dedekind's Problem, ResearchGate, May 2017.
  2. Ross La Haye, Five Sums Associated with a k-ary Cartesian Product, and the Function f (q, n, m)= q * n * m^(n – 1), 2018. PDF (A000027, A001787, A002697, A002699, A005843, A007778, A018215, A027471, A027473, A036289, A036290, A036291, A036292, A036293, A036294, A053464, A053469, A053539, A053540, A053541, A081127, A085708, A120908, A126431, A134574, A158749, A167667, A193132, A212697, A212698, A212699, A212700, A212701, A212702, A212703, A212704, A229504, A230539, A230540, A241201, A269760, A269822, A269895, A270111)
  3. T. Laarhoven and B de Weger, The Collatz conjecture and De Bruijn graphs, arXiv preprint arXiv:1209.3495, 2012
  4. Patrick Labarque, Blueprint for a Classic Proof of the Four Colour Theorem (2008); arXiv:0802.1535 and Indag. Math., New Ser. 24, No. 4, 971-983 (2013). doi:10.1016/j.indag.2013.03.003
  5. Anthony Labarre, Review of "Combinatorial Pattern Matching Algorithms in Computational Biology Using Perl and R" by Gabriel Valiente, in William Gasarch, The Book Review Column, PDF 2012.
  6. Jean-Philippe Labbé, Carsten Lange, Cambrian acyclic domains: counting c-singletons, arXiv:1802.07978 [math.CO], 2018. (A000984, A001405)
  7. Sébastien Labbé and Mélodie Lapointe, The q-analog of the Markoff injectivity conjecture over the language of a balanced sequence, Comb. Theor. (2022) Vol. 2, No. 1, #9. doi:10.5070/C62156881 See also arXiv:2106.15886 [math.CO], 2021. (A123245)
  8. Sebastien Labbé, Mélodie Lapointe, and Wolfgang Steiner, A q-analog of the Markoff injectivity conjecture holds, arXiv:2212.09852 [math.CO], 2022. (A002559)
  9. Sébastien Labbé and Jana Lepšová, A Fibonacci analogue of the two's complement numeration system, RAIRO-Theor. Inf. Appl. (2023) Vol. 57, No. 12. See p. 16. doi:10.1051/ita/2023007 (A003482)
  10. S. Labbé, E. Pelantová, Palindromic sequences generated from marked morphisms, arXiv preprint arXiv:1409.7510, 2014
  11. Gilbert Labelle, On combinatorial differential equations, Journal of Mathematical Analysis and Applications, Volume 113, Issue 2, 1 February 1986, Pages 344-381.
  12. Gilbert Labelle, Counting asymmetric enriched trees, Journal of Symbolic Computation, Volume 14, Issues 2-3, August-September 1992, Pages 211-242.
  13. G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Mathematics 217, numbers 1-3 (2000), 237-248.
  14. Gilbert Labelle and Annie Lacasse, Closed paths whose steps are roots of unity, in FPSAC 2011, Reykjav´k, Iceland, DMTCS proc. AO, 2011, 599-610; http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/download/dmAO0153/3610.
  15. G. Labelle, C. Lamathe and P. Leroux, Molecular expansion of the species of plane and planar 2-trees, Accepted for publication in Theoretical Computer Science (26 pages). (PostScript, Pdf)
  16. G. Labelle, C. Lamathe and P. Leroux, Enumeration des 2-arbres k-gonaux, communication acceptee au colloque MathInfo 2002 (15 pages). (PostScript, Pdf)
  17. G. Labelle, C. Lamathe and P. Leroux, arXiv:math.CO/0202052, A classification of plane and planar 2-trees, Theoretical Computer Science, 307 (2003), no. 2, 337-363.
  18. G. Labelle, C. Lamathe and P. Leroux, Labelled and unlabelled enumeration of k-gonal 2-trees, (ps, pdf), J. Combin. Theory Ser. A 106 (2004), no. 2, 193-219.
  19. G. Labelle and P. Leroux, An extension of the exponential formula in enumerative combinatorics, Electronic Journal of Combinatorics, Volume 3(2), 1996, article #R12.
  20. G. Labelle, P. Leroux, E. Pergola and R. Pinzani, Stirling numbers interpolation using permutations with forbidden subsequences, Discrete Mathematics, 246 (2002), 177-195.
  21. Labelle, Jacques. "Quelques especes sur les ensembles de petite cardinalité." Ann. Sc. Math. Québec 9.1 (1985): 31-58.
  22. J. Labelle, Self-avoiding walks and polyominoes in strips, Bull. ICA, 23 (1998), 88-98.
  23. Clément Labi, “Kripkenstein” in Legal Interpretation, International Journal for the Semiotics of Law - Revue internationale de Sémiotique juridique (2020) Vol. 33, No. 4, 1059–1072. doi:10.1007/s11196-020-09772-z The On-Line Encyclopedia of Integer Sequences® (OEIS®) computes all possible sequences that fit specific terms
  24. P Laborde-Zubieta, Occupied Corners in Tree-like Tableaux, Séminaire Lotharingien de Combinatoire, 74 (2015), Article B74b.
  25. Michael La Croix, Approaches to the Enumerative Theory of Meanders, September 29, 2003.
  26. Lucas Lacasa, Bartolome Luque, Ignacio Gómez, Octavio Miramontes, On a Dynamical Approach to Some Prime Number Sequences, Entropy 20.2 (2018): 131, also arXiv:1802.08349 [math.NT], 2018. (A002144, A002145)
  27. G. Lachaud, On the distribution of the trace in the unitary symplectic group and the distribution of Frobenius, arXiv preprint arXiv:1506.06482, 2015.
  28. Gilles Lachaud, The distribution of the trace in the compact group of type G_2, in Arithmetic Geometry: Contemporary Mathematics (2019) Vol. 722, 79-103. doi:10.1090/conm/722/14536 (A059710)
  29. Marie-Louise Lackner, M Wallner, An invitation to analytic combinatorics and lattice path counting; Preprint, Dec 2015, http://dmg.tuwien.ac.at/mwallner/files/lpintro.pdf
  30. Marie-Louise Lackner and Martin Lackner, On the likelihood of single-peaked preferences, Social Choice and Welfare, April 2017, Volume 48, Issue 4, pp. 717-745. doi:10.1007/s00355-017-1033-0
  31. Thomas Lackner, Pretrained Model for Understanding of Integer Sequences, Bachelor's Thesis, ETH (Zürich 2022). PDF This dataset consists of preprocessed integer sequences from the OEIS dataset. The preprocessing was done by FACT [3]. Each sequence is labeled with its types (polynomial, exponential, etc.). This information is not used by BERTIS and is discarded. The preprocessed data consists of 1.75M sequence windows of 50 integers. For BERTIS training, the window size is configured to 25 such that there are valid next sequences for the NSP task.
  32. Francis Laclé, 2-adic parity explorations of the 3n+ 1 problem, hal-03201180v2 [cs.DM], 2021. Abstract (A000265, A004523, A007814, A050603, A089309, A136480, A160541, A163575)
  33. Nadia Lafrenière, Counting in a sophisticated manner, Algebraic Combinatorics (Math 68, Dartmouth College, 2019), Lecture 2. PDF (A000009)
  34. J. C. Lagarias, Wild and Wooley numbers, Amer. Math. Monthly, 113 (No. 2, 2006), 97-108.
  35. J. C. Lagarias, Euler's constant: Euler's work and modern developments, Bull. AMS, 50 (2013), 527-628.
  36. J. C. Lagarias, H. Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv preprint arXiv:1409.4145, 2014
  37. J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The EKG sequence, Experimental Math. 11 (2003), 437-446.
  38. J. C. Lagarias and N. J. A. Sloane, arXiv:math.CO/0310423 Approximate Squaring, Experimental Math., 13 (2004), 113-128.
  39. Ross La Haye, Binary relations on the power set of an n-element set, JIS 12 (2009) 09.2.6.
  40. Lucas Laird, Richard C. Tillquist, Stephen Becker, Manuel E. Lladser, Resolvability of Hamming Graphs, arXiv:1907.05974 [cs.DM], 2019. (A303735)
  41. Robert A. Laird, Brandon S. Schamp, Calculating Competitive Intransitivity: Computational Challenges, The American Naturalist (2018), Vol. 191, No. 4, 547-552. doi:10.1086/696266 (A000568, A003141)
  42. Robert A. Laird, Brandon S. Schamp, Exploring the performance of intransitivity indices in predicting coexistence in multispecies systems, Journal of Ecology (2018) Vol. 106, Issue 3, 815-825. doi:10.1111/1365-2745.12957 (A000568)
  43. Joshua D. Laison and Michelle Schick, "Seeing Dots: Visibility of Lattice Points", Mathematics Magazine, Vol. 80, #4, pp. 274 - 282 (2007).
  44. Kartik Lakhotia, Kelly Isham, Laura Monroe, Maciej Besta, Torsten Hoefler, and Fabrizio Petrini, In-network Allreduce with Multiple Spanning Trees on PolarFly, Proc. 35th ACM Symp. Parallelism in Algorithms and Architectures (SPAA 2023), 165–176. doi:10.1145/3558481.3591073
  45. K Lakshmi, R Someshwari On The Negative Pell Equation y^2 = 72x^2 - 23, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 7, July (2016).
  46. A. Lakshminarayan, Z. Puchala, K. Zyczkowski, Diagonal unitary entangling gates and contradiagonal quantum states, arXiv preprint arXiv:1407.1169, 2014.
  47. Ching-Wan Lam, Enumeration of constitutional isomers of methyl alkanes by means of alkyl biradicals: equivalence of odd and even isomer series of symmetrical methyl alkanes, J. Math. Chem., 2023. doi:10.1007/s10910-023-01469-5
  48. F. Lam, On the Well-posedness of Magnetohydrodynamics Equations for Incompressible Electrically-Conducting Fluids, arXiv preprint arXiv:1401.2029, 2014
  49. F. Lam, Vorticity evolution in a rigid pipe of circular cross-section, preprint arXiv:1505.07723 (A107841)
  50. Thomas Lam, Lauren Williams, Total positivity for cominuscule Grassmannians (2007), arXiv:0710.2932.
  51. Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(√d), arXiv:1904.13002 [math.NT], 2019. (A000032, A000045, A000129, A001075, A001081, A001085, A001333, A001353, A004189, A005667, A005668, A006190, A006497, A041061, A077412, A097309)
  52. Robin Lamarche-Perrin, An Information-theoretic Framework for the Lossy Compression of Link Streams, arXiv:1807.06874 [cs.DS], 2018. (A003095, A135361)
  53. R. Lamarche-Perrin, Y. Demazeau, J.-M. Vincent, A Generic Algorithmic Framework to Solve Special Versions of the Set Partitioning Problem, http://www.mis.mpg.de/preprints/2014/preprint2014_105.pdf, Preprint 105, Max-Planck-Institut fur Mathematik in den Naturwissenschaften, Leipzig, 2014.
  54. Konstantinos Lambropoulos, Constantinos Simserides, Spectral, localization and charge transport properties of periodic, aperiodic and random binary sequences, arXiv:1808.04764 [cond-mat.soft], 2018. (A001083)
  55. Cédric Lamathe, "The Number of Labelled k-Arch Graphs", J. Integer Sequences, Volume 7, 2004, Article 04.3.1.
  56. T. Lamont-Smith, Multiplicative Persistence and Absolute Multiplicative Persistence, J. Int. Seq., Vol. 24 (2021), Article 21.6.7. HTML (A003001, A064867, A064868, A064869, A064870, A064871, A064872, A330152)
  57. Lampe, P. Quantum cluster algebras of type A and the dual canonical basis. Proc. Lond. Math. Soc. (3) 108 (2014), no. 1, 1-43.
  58. Guillaume Lample, François Charton, Deep Learning for Symbolic Mathematics, arXiv:1912.01412 [cs.SC], 2019. (A006318)
  59. Leon Lampret and Aleš Vavpetič, Torsion table for the Lie algebra niln, arXiv:1708.02783 [math.AT], 2017.
  60. Bin Lan and James A. Sellers, Properties of a Restricted Binary Partition Function a la Andrews and Lewis, Electronic Journal of Combinatorial Number Theory, Volume 15 #A23. (A070047, A000695)
  61. Giuseppe Lancia, Paolo Serafini, Polyhedra. Chapter 2 of Compact Extended Linear Programming Models (2018). EURO Advanced Tutorials on Operational Research. Springer, Cham., 11. (A001653)
  62. Giuseppe Lancia and Paolo Serafini, Computational Complexity and ILP Models for Pattern Problems in the Logical Analysis of Data, Algorithms (2021) Vol. 14, No. 8, 235. doi:10.3390/a14080235 (A006046)
  63. Cécilia Lancien, Patrick Oliveira Santos, and Pierre Youssef, Central Limit Theorem for tensor products of free variables, arXiv:2404.19662 [math.PR], 2024. See p. 7. (A005568)
  64. Bruce M. Landman, Florian Luca, Melvyn B. Nathanson, Jaroslav Nešetřil, and Aaron Robertson, Number Theory and Combinatorics: A Collection in Honor of the Mathematics of Ronald Graham, De Gruyter Proceedings in Mathematics, 1st Ed. (2021). Google Books (A001661)
  65. W. Lang, On Polynomials Related to Powers and Derivatives of the Generating Function of Catalan's Numbers , KA-TP-4-1998, April.
  66. Wolfdieter Lang, "On Generalizations of the Stirling Number Triangles", J. Integer Sequences, Volume 3, 2000, Article 00.2.4.
  67. W. Lang, On Polynomials Related to Powers of the Generating Function of Catalan's Numbers, The Fibonacci Quarterly, Vol.38,5 (2000) pp 408-419.
  68. W. Lang, Riccati meets Fibonacci, KA-TP-11-2001, Jun. The Fibonacci Quarterly.
  69. W. Lang, On Polynomials Related to Derivatives of the Generating Function of Catalan Numbers, The Fibonacci Quarterly, Vol.40,4 (2002) pp 299-313.
  70. W. Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv preprint arXiv:1210.1018, 2012
  71. W. Lang, On Collatz' Words, Sequences and Trees, arXiv preprint arXiv:1404.2710, 2014 and JIS 17 (2014) 13.11.7
  72. W. Lang, Notes on Some Geometric and Algebraic Problems Solved by Origami, arXiv preprint arXiv:1409.4799, 2014
  73. Wolfdieter Lang, A Geometrical Problem of Omar Khayyám and its Cubic, preprint, 2015. (A256099)
  74. Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
  75. Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], 2017.
  76. Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent arXiv:1810.09787 2018.
  77. Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020. (A000010, A000265, A001622, A003558, A023022, A038566, A053120, A055034, A065942, A082375, A082654, A127672, A135303, A187360, A216319, A216371, A232624, A268923, A332433, A332434, A332435, A332436, A332437, A332439, A333848, A333849, A333850, A333851, A333853, A333855, A334430)
  78. Wolfdieter Lang, A list of representative simple difference sets of the Singer type for small orders m, Karlsruher Institut für Technologie (Karlsruhe, Germany 2020). doi:10.xxxxx (A000010, A000961, A001622, A333852, A333862, A333863, A335864)
  79. Wolfdieter Lang, Cantor's List of Real Algebraic Numbers of Heights 1 to 7, arXiv:2307.10645 [math.NT], 2023. (A000740, A000837, A001622, A007947, A362366, A364312, A364313, A364314, A364315, A364316. In tables: A000038, A001477, A001622, A002163, A002193, A002194, A002580, A002581, A005480, A005531, A010503, A010722, A010767, A010701, A011002, A014176, A019913, A019973, A020760, A020761, A020773, A020793, A058265, A060006, A060007, A072365, A075778, A085550, A086106, A088559, A089826, A090388, A092526, A094214, A098316, A098317, A104457, A109134, A115754, A122553, A130880, A132338, A134972, A137421, A152422, A152623, A152627, A154747, A157697, A160155, A160389, A160390, A178255, A178485, A178959, A188582, A188943, A188485, A188934, A189038, A192918, A197762, A209927, A222132, A222133, A223139, A228497, A230151, A230152, A231187, A235362, A246725, A255240, A255241, A263719, A270714, A273065, A273066, A272874, A274981, A278928, A294644, A316711, A319034, A332133, A332437, A332438, A337569, A356030, A356031, A356032, A356034, A356035, A357100, A357101, A357102, A357103, A357104, A357105, A357106, A357107, A357108, A357109, A357463, A357464, A357465, A357466, A357467, A357468, A357469, A357470, A357471, A357472, A358181, A358182, A358183, A358184, A358186, A358187, A358188, A358189, A358190, A358938, A358939, A358940, A358941, A358942, A358943, A358945)
  80. Thomas Lange, Biconnected reliability, Hochschule Mittweida (FH), Fakultät Mathematik/Naturwissenschaften/Informatik, Master's Thesis, 2015.
  81. Holger Langenau, Squaring the square: New methods for determining the number of perfect square packings, 2018. PDF (A034295)
  82. J. C. Langer and D. A. Singer, Subdividing the Trefoil by Origami, Geometry (Hindawi Publishing Company), 2013, #ID 897320.
  83. Philipp Langer, Felix Naumann, Efficient order dependency detection, The VLDB Journal 25.2 (2016): 223-241; doi:10.1007/s00778-015-0412-3.
  84. T. Langley, J. Liese, J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2
  85. Johanna Langner, Henryk A. Witek, Equivalence between Clar covering polynomials of single zigzag chains and tiling polynomials of 2 X n rectangles, Discrete Applied Mathematics Vol. 243 (2018), 297-303. doi:10.1016/j.dam.2018.02.019
  86. Alessandro Languasco, A note on the computation of the Euler-Kronecker constants for cyclotomic fields, arXiv:1903.05487 [math.NT], 2019. (A135311)
  87. Alessandro Languasco, Pieter Moree, Sumaia Saad Eddin, Alisa Sedunova, Computation of the Kummer ratio of the class number for prime cyclotomic fields, arXiv:1908.01152v3 [math.NT], 2019. (A135311)
  88. Jennifer Lansing, Distribution of Values of the Binomial Coefficients and the Stern Sequence, Journal of Integer Sequences, 16 (2013), #13.3.7.
  89. J. Lansing, On the Stern Sequence and a Related Sequence, Ph. D. Dissertation, Univ. Illinois, 2014.
  90. J. Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5.
  91. W. Lanssens, B. Demoen, P.-L. Nguyen, The Diagonal Latin Tableau and the Redundancy of its Disequalities, Report CW 666, July 2014, Department of Computer Science, KU Leuven; http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW666.pdf ["As always when confronted with a sequence of integers, it pays off to look at The On-Line Encyclopedia of Integer Sequences http://oeis.org ..."]
  92. Matthias Lanzinger and Pablo Barceló, On the Power of the Weisfeiler-Leman Test for Graph Motif Parameters, arXiv:2309.17053 [cs.LG], 2023. (A000110)
  93. Paul W. Lapey and Aaron Williams, A Shift Gray Code for Fixed-Content Łukasiewicz Words, Williams College (Massachusetts, 2022). Abstract (A000108, A001006, A006318, A055151, A088617)
  94. Laphou Lao, Zecheng Li, Songlin Hou, Bin Xiao, Songtao Guo, Yuanyuan Yang, A Survey of IoT Applications in Blockchain Systems: Architecture, Consensus and Traffic Modeling, ACM Computing Surveys (CSUR, 2020) Vol. 53, No. 1, Article No. 18. doi:10.1145/3372136 (A003024)
  95. Guillaume Laplante-Anfossi and Thibaut Mazuir, The diagonal of the multiplihedra and the tensor product of A-morphisms, Journal de l’École Polytechnique — Mathématiques (2023) Vol. 10, pp. 405-446. doi:10.5802/jep.221
  96. M. Lapointe and C. Reutenauer, On the Frobenius conjecture, Integers (2021) Vol. 21, #A67. PDF (A352695)
  97. Laohakosol, Vichian; Yuttanan, Boonrod Iterates of increasing sequences of positive integers. Aequationes Math. 87 (2014), no. 1-2, 89-103.
  98. Gabriel Lapointe, On finding the smallest happy numbers of any heights, arXiv:1904.12032 [math.NT], 2019. (A001348)
  99. N. Laptyeva, V. K. Murty, Fourier coefficients of forms of CM-type, Indian Journal of Pure and Applied Mathematics, October 2014, Volume 45, Issue 5, pp 747-758.
  100. A. Laradji and A. Umar, "Combinatorial Results for Semigroups of Order-Decreasing Partial Transformations", J. Integer Sequences, Volume 7, 2004, Article 04.3.8.
  101. Laradji, A.; Umar, A. Combinatorial results for semigroups of order-preserving partial transformations. J. Algebra 278 (2004), no. 1, 342-359.
  102. Laradji, A.; Umar, A. Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum 72 (2006), no. 1, 51-62.
  103. A. Laradji and A. Umar, Combinatorial Results for the Symmetric Inverse Semigroup, Semigroup Forum, Volume 75, Number 1 / September, 2007.
  104. Laradji, A.; Umar, A. Some combinatorial properties of the symmetric monoid. Internat. J. Algebra Comput. 21 (2011), no. 6, 857-865.
  105. A. Laradji and A. Umar, Further combinatorial properties of the symmetric inverse semigroup, http://www.ibg.uu.se/digitalAssets/121/121877_poster1.pdf, 2012.
  106. A. Laradji and A. Umar, Lattice Paths and Order-preserving Partial Transformations, arXiv preprint arXiv:1304.7574, 2013
  107. Laradji, Abdallah; Umar, Abdullahi On the number of subpermutations with fixed orbit size. Ars Combin. 109 (2013), 447-460.
  108. A. Laradji, A. Umar, Combinatorial results for semigroups of order-preserving or order-reversing subpermutations, Journal of Difference Equations and Applications, Volume 21, Issue 3, 2015.
  109. A. Laradji and A. Umar, Further combinatorial results for the symmetric inverse monoid, Algebra Disc. Math. (2022) Vol. 33, No. 2, 78-91. doi:10.12958/adm1793
  110. P. J. Larcombe and E. J. Fennessey, Conditions governing cross-family member equality in a particular class of polynomial families, Fib. Q., 52 (2014), 349-356.
  111. Peter J. Larcombe, Daniel R. French, On the “Other” Catalan Numbers: A Historical Formulation Re-Examined, Congressus Numerantium, 143 (2000), 33-64; https://www.researchgate.net/profile/Peter_Larcombe/publication/268646122_On_the_other_Catalan_numbers_A_historical_formulation_re-examined/links/583c19d108ae502a85e386d7.pdf
  112. Peter J. Larcombe, Julius Fergy T. Rabago, Eric J. Fennessey, On two derivative sequences from scaled geometric mean sequence terms, Palestine Journal of Mathematics (2018) Vol. 7(2), 397-405. PDF. (A001045, A045883)
  113. Peter J. Larcombe, Jack Sutton, and James Stanton, A note on the constant 1/e, Palest. J. Math. (2023) Vol. 12, No. 2, 609-619. PDF (A000587 p. 617, A059193, A068985)
  114. J. F. J. Laros, Numeration-automatic sequences (2006), arXiv:cs/0605076.
  115. F. Larrion, M. A. Pizana, R. Villarroel-Flores, On self-clique shoal graphs, Discr. Appl. Math. 205 (2016) 86-100 doi:10.1016/j.dam.2016.01.013
  116. Daniel Larsen, Focusing Sequences and Self-Similarity, Fib. Q., 58:3 (2020), 231-240.
  117. M. E. Larsen, The eternal triangle - a history of a counting problem, College Math. J., 20 (1989), 370-392.
  118. Morten Larsen, Petar Popovski and Soren Andersen, Cooperative Communication with Multiple Description Coding, in Cooperation in Wireless Networks: Principles and Applications, Springer-Verlag.
  119. Jean A. Larson, doi:10.1007/s00493-008-2148-9 Counting canonical partitions in the random graph, Combinatorica 28 (6) (2008) 659-678
  120. J. M. Larson, Cheating Because They Can: Social Networks and Norm Violators, PDF, 2014.
  121. U. Larsson, Impartial Games and Recursive Functions
  122. U. Larsson, N. Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
  123. Urban Larsson, Simon Rubinstein-Salzedo, Aaron N. Siegel, Memgames, arXiv:1912.10517 [math.CO], 2019. (A131469)
  124. Larry LaRue, Happy 12-13-14, everyone! Saturday is the latest sequential date that humans like to celebrate, Tacoma News Tribune, Dec 12 2014
  125. M. Latapy, Partitions of an Integer into Powers, Discrete Mathematics and Theoretical Computer Science special issue, Proceedings of Discrete Models - Combinatorics, Computation and Geometry 2001 (DM-CCG'01). (ps.gz, pdf )
  126. G. Latouche, P. G. Taylor, A stochastic fluid model for an ad hoc mobile network, Queueing Syst. 63, No. 1-4, 109-129 (2009), doi:10.1007/s11134-009-9153-6
  127. Paul Laubie, Combinatorics of pre-Lie products sharing a Lie bracket, arXiv:2309.05552 [math.QA], 2023. (A005264)
  128. Robert Laugwitz and Vladimir Retakh, Algebras of Quasi-Plücker Coordinates are Koszul, arXiv:1703.08747 [math.RA], 2017.
  129. Adrien Laurent, Robert I. McLachlan, Hans Z. Munthe-Kaas, and Olivier Verdier, The aromatic bicomplex for the description of divergence-free aromatic forms and volume-preserving integrators, arXiv:2301.10998 [math.NA], 2023. (A000081)
  130. Monique Laurent, Sven Polak, and Luis Felipe Vargas, Semidefinite approximations for bicliques and biindependent pairs, arXiv:2302.08886 [math.CO], 2023. (A307768)
  131. Bernard J. Laurenzi, Special values of the Lommel functions and associated integrals, arXiv:1901.03384 [math.CA], 2019. (A189368)
  132. S. Laurin, Organizing center for the bifurcation analysis of a generalized Gauss model with prey harvesting and Holling response function of type III, Journal of Differential Equations, 2011
  133. Steffen Lauritzen, Alessandro Rinaldo, Kayvan Sadeghi, On Exchangeability in Network Models, arXiv:1709.03885 [math.ST], 2017.
  134. Steffen Lauritzen, Alessandro Rinaldo, Kayvan Sadeghi, Random Networks, Graphical Models, and Exchangeability, arXiv:1701.08420, 2017.
  135. R. Lauterbach, Equivariant Bifurcation and Absolute Irreducibility in R^8: A Contribution to Ize Conjecture and Related Bifurcations, Journal of Dynamics and Differential Equations, 2014; doi:10.1007/s10884-014-9402-1
  136. Ali Mohammad Lavasani and Denis Pankratov, Advice complexity of online non-crossing matching, Computational Geometry: Theory and Applications (2023) Volume 110 Issue C Mar 2023. doi:10.1016/j.comgeo.2022.101943 (A000108)
  137. Tamara M. Lavshuk, Regular polygons and polyhedra over finite field, Mathematical Notes of NEFU (North-Eastern Federal Univ., Yakutsk, Russia, 2015) Vol. 22, No. 4. Abstract
  138. Shirley Law, Hopf Algebra of Sashes, in FPSAC 2014, Chicago, USA; Discrete Mathematics and Theoretical Computer Science (DMTCS) Proceedings, 2014, 621-632; http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewFile/dmAT0159/4536.
  139. Steve Lawford, Counting five-node subgraphs, arXiv:2009.11318 [math.CO], 2020. (A001349)
  140. Steve Lawford, Yll Mehmeti, Cliques and a new measure of clustering: with application to U.S. domestic airlines, arXiv:1806.05866 [cs.SI], 2018. (A000055, A161680)
  141. Brian Lawrence, Will Sawin, The Shafarevich conjecture for hypersurfaces in abelian varieties, arXiv:2004.09046 [math.NT], 2020. (A061278)
  142. Lawrence, Jim. "Dual-Antiprisms and Partitions of Powers of 2 into Powers of 2." Discrete & Computational Geometry, Vol. 16 (2019): 465-478. See page 466. doi:10.1007/s00454-019-00070-5
  143. S. Lawrencenko and A. M. Magomedov, Generating the triangulations of the torus with the vertex-labeled graph K{2, 2, 2, 2}, Symmetry (2021) Vol. 13, 1418. doi:10.3390/sym13081418 (A000055)
  144. Wayne Lawton, Refinable functions with PV dilations, arXiv preprint arXiv:1605.06195, 2016
  145. John W. Layman, "Some Properties of a Certain Nonaveraging Sequence", J. Integer Sequences, Volume 2, 1999, Article 99.1.3.
  146. John W. Layman, "The Hankel Transform and Some of its Properties", J. Integer Sequences, Volume 4, 2001, Article 01.1.5.
  147. Sami Lazaar, Houssem Sabri, and Randa Tahri, Structural and Numerical Studies of Some Topological Properties for Alexandroff Spaces, Bull. Iran. Math. Soc. (2021). doi:10.1007/s41980-021-00599-3 (A000798, A001035)
  148. G. Le Caer, A New Family of Solvable Pearson-Dirichlet Random Walks, Journal of Statistical Physics, Volume 144, Number 1, 23-45, doi:10.1007/s10955-011-0245-4.
  149. Mark R. Leach, The Internet Database of Periodic Tables, http://www.meta-synthesis.com/webbook/35_pt/pt_database.php/38_binary/iupac.org/pt_database.php?Button=recent#top
  150. E. Lebensztayn, A large deviations principle for the Maki-Thompson rumour model, arXiv preprint arXiv:1411.5614, 2014
  151. J. Lebl, Addendum to Uniqueness of certain polynomials constant on a line, arXiv preprint arXiv:1302.1441, 2013
  152. Jiri Lebl and Daniel Lichtblau, Uniqueness of certain polynomials constant on a hyperplane (2008); arXiv:0808.0284
  153. Noah Lebowitz-Lockard and Joseph Vandehey, On the number of partitions of a number into distinct divisors, arXiv:2402.08119 [math.NT], 2024. (A018818, A033630, A225245)
  154. A Ledda, G Achaz, T Wiehe, L Ferretti, Decomposing the site frequency spectrum: the impact of tree topology on neutrality tests, arXiv preprint arXiv:1510.06748, 2015.
  155. Antony Lee, Diophantine Approximation and Dynamical Systems, Master's Thesis, Lund University (Sweden 2020). PDF (A001203)
  156. Catherine Lee, Minimum coprime graph labelings, arXiv:1907.12670 [math.CO], 2019. (A104272, A213273)
  157. Daeseok Lee and H.-K. Ju, An Extension of Hibi's palindromic theorem, arXiv preprint arXiv:1503.05658, 2015.
  158. Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, On Schubert varieties of complexity one, arXiv:2009.02125 [math.AT], 2020. (A001871)
  159. Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, Toric Richardson varieties of Catalan type and Wedderburn-Etherington numbers, arXiv:2105.12274 [math.AG], 2021. (A001190, A88325)
  160. Geon Lee, Seokbum Yoon, Jihoon Ko, Hyunju Kim, and Kijung Shin, Hypergraph Motifs and Their Extensions Beyond Binary, arXiv:2310.15668 [cs.SI], 2023. (A000612, A323819)
  161. Jeong-Yup Lee, D Flom, SI Ben-Abraham, Multidimensional period doubling structures, Acta Crystallographica Section A: Foundations, (2016). A72, 391-394; doi:10.1107/S2053273316004897
  162. Jeong-Yup Lee, Dong-il Lee, Sungsoon Kim, Gröbner-Shirshov bases for Temperley-Lieb algebras of the complex reflection group of type G(d,1,n), arXiv:1808.06523 [math.RA], 2018. (A009766)
  163. Jon Lee, Joseph Paat, Ingo Stallknecht, and Luze Xu, Polynomial upper bounds on the number of differing columns of Δ-modular integer programs, arXiv:2105.08160 [math.OC], 2021. (A085548)
  164. Kyu-Hwan Lee, Se-Jin Oh, Catalan triangle numbers and binomial coefficients, arXiv preprint arXiv:1601.06685, 2016.
  165. Sang June Lee, Jun Seok Oh, On zero-sum free sequences contained in random subsets of finite cyclic groups, arXiv:2003.02511 [math.CO], 2020. (A116608)
  166. Seung-Hoon Lee, Mario Gerla, Hugo Krawczyk, Kang-Won Lee and Elizabeth A. Quaglia, Performance Evaluation of Secure Network Coding using Homomorphic Signature, http://www.cs.ucla.edu/~shlee/papers/netcod_TECH.pdf
  167. Seungho Lee, Combinatorial Identities on Multinomial Coefficients and Graph Theory, Rose-Hulman Undergraduate Mathematics Journal (2019) Vol. 20, No. 2, Article 1. PDF (A001187)
  168. Yi-Lin Lee, Off-diagonally symmetric domino tilings of the Aztec diamond, arXiv:2303.02750 [math.CO], 2023. (A033877)
  169. Yi-Lin Lee, Off-diagonally symmetric domino tilings of the Aztec diamond of odd order, arXiv:2404.09057 [math.CO], 2024. (A000129, A006318, A008288)
  170. Dimitri Leemans, String C-group representations of almost simple groups: a survey, arXiv:1910.08843 [math.CO], 2019.
  171. S. Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, JIS 12 (2009) 09.5.5
  172. S. Legendre, Foldings and Meanders, arXiv preprint arXiv:1302.2025, 2013 and Australas. J. Comb. 58 (2014) 275
  173. Legendre, Stéphane; Paclet, Philippe On the permutations generated by cyclic shift. J. Integer Seq. 14 (2011), no. 3, Article 11.3.2, 14 pp.
  174. Lehmer, D. H. Some recursive sequences. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 15--30. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. MR0335426 (49 #208)
  175. M. Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent. Math. 136 (1999), no. 1, 157-207.
  176. F. Lehner, A noncrossing basis for noncommutative invariants of SL(2,C). J. Combin. Theory Ser. A 118 (2011), no. 1, 257-269.
  177. Siegfried Lehr, Jeffrey Shallit, John Tromp, On the vector space of the automatic reals, Theoretical Computer Science, Volume 163, Issues 1-2, 30 August 1996, Pages 193-210.
  178. Erkko Lehtonen and Tamás Waldhauser, Associative spectra of graph algebras I. Foundations, undirected graphs, antiassociative graphs, arXiv:2011.07621 [math.CO], 2020. See also Associative spectra of graph algebras I: Foundations, undirected graphs, antiassociative graphs, J. of Algebraic Combinatorics (2021) Vol. 53, 613-638. doi:10.1007/s10801-020-01010-w (A000079, A001519, A007051, A080934, A080937)
  179. Erkko Lehtonen and Tamás Waldhauser, Associative spectra of graph algebras II. Satisfaction of bracketing identities, spectrum dichotomy, arXiv:2011.08522 [math.CO], 2020. (A005251)
  180. Marie Lejeune, On the k-binomial equivalence of finite words and k-binomial complexity of infinite words, Ph. D. Thesis, Université de Liège (Belgium, 2021). PDF (A000125)
  181. A. V. Lelechenko, Parity of the number of primes in a given interval and algorithms of the sublinear summation, arXiv preprint arXiv:1305.1639, 2013
  182. A. V. Lelechenko, The Quest for the Generalized Perfect Numbers, in Theoretical and Applied Aspects of Cybernetics, TAAC 2014, Kiev; http://taac.org.ua/files/a2014/proceedings/UA-2-Andrew%20Lelechenko-440.pdf
  183. Lelechenko, A. V. (2014). “Exponential and infinitary divisors”. arΧiv:1405.7597. 
  184. Lemmen, E.; van Duivenbode, J.; Duarte, J. L.; Lomonova, E. A. (2015). “Flexible Multilevel Converters using 4-Switch Extended Commutation Cells”. IEEE J. Emg. Sel. Topics Power Elect 3: pp. 794–804. doi:10.1109/JESTPE.2015.2427913. . (A001045)
  185. Lemmermeyer, F. "Václav Šimerka: quadratic forms and factorization." LMS Journal of Computation and Mathematics 16 (2013): 118-129.
  186. Tamás Lengyel, "Asymptotics for Lacunary Sums of Binomial Coefficients and a Card Problem with Ranks", J. Integer Sequences, Volume 10, 2007, Article 07.7.2.
  187. Tamás Lengyel. On some 2-adic properties of a recurrence involving Stirling numbers. p-Adic Numbers Ultrametric Anal. Appl. 4, No. 3, 179-186 (2012). doi:10.1134/s2070046612030028
  188. Tamás Lengyel, On p-adic properties of the Stirling numbers of the first kind, Journal of Number Theory, 148 (2015) 73-94.
  189. Tamás Lengyel, A Note on a Permutation Statistic, J. Int. Seq., Vol. 22 (2019), Article 19.5.1. HTML (A000111)
  190. Tamás Lengyel, On some p-adic properties and supercongruences of Delannoy and Schröder Numbers, Integers (2021) Vol. 21, #A86. PDF (A001850, A006318)
  191. C. Lenormand, Compléments d'informatique fondamentale, mathématiques, combinatoires, linguistiques (Livre I/Livre II/Livre III), Département Informatique Université Paris 8, 2002 (see Préface ).
  192. John Lentfer, A conjectural basis for the (1,2)-bosonic-fermionic coinvariant ring, arXiv:2406.19715 [math.CO], 2024. See p. 2. (A201595)
  193. Julien Leroy, Michel Rigo, Manon Stipulanti, Counting Subwords Occurrences in Base-b Expansions, arXiv:1705.10065 [math.CO], 2017.
  194. K. Leonard, Efficient shape modelint: epsilon-entropy, adaptive codign, and boundary curves vs Blum's medial axis, Int.J. Comp. Vis. 74 (2)(2007) 183-199. doi:10.1007/s11263-006-0010-3
  195. Paolo Leonetti, Carlo Sanna, On the greatest common divisor of n and the nth Fibonacci number, arXiv:1704.00151 [math.NT], 2017.
  196. Paul Leopardi, Proposal Dp130101924: new constructions for Hadamard matrices, (2013)
  197. Leopardi, Paul C. Constructions for Hadamard matrices using Clifford algebras, and their relation to amicability/anti-amicability graphs. Australas. J. Combin. 58 (2014), 214-248.
  198. Philippe Leroux, An equivalence of categories motivated by weighted directed graphs, arXiv:math-ph/0709.3453.
  199. Philippe Leroux, "A Simple Symmetry Generating Operads Related to Rooted Planar m-ary Trees and Polygonal Numbers", J. Integer Sequences, Volume 10, 2007, Article 07.4.7.
  200. Philippe Leroux, L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs, arXiv:0709.3453 [math-ph], 2007. (A006013)
  201. Leroy, Julien, Rigo, M., & Stipulanti, M. (2017). Counting the number of non-zero coefficients in rows of generalized Pascal triangles. Discrete Mathematics, 340, 862-881.
  202. Julien Leroy, Michel Rigo, Manon Stipulanti, Counting subword occurrences in base-b expansions, Integers (2018) 18A, Article #A13. Abstract (A007306, A282720)
  203. Pierre Lescanne, "On counting untyped lambda terms", Theor. Comput. Sci. Volume 474, (2013) 80-97
  204. Pierre Lescanne, An exercise on streams: convergence acceleration, arXiv preprint arXiv:1312.4917, 2013
  205. P. Lescanne, Bolzmann samplers for random generation of lambda terms, arXiv preprint arXiv:1404.3875, 2014.
  206. Pierre Lescanne, Quantitative aspects of linear and affine closed lambda terms, arXiv:1702.03085 [cs.DM], 2017. Also in ACM Transactions on Computational Logic (TOCL 2019) Vol. 19, No. 2, Article No. 9. doi:10.1145/3173547 (A062980, A281270, A287045)
  207. Pierre Lescanne, Zaionc paradox revisited, arXiv:2104.06723 [cs.LO], 2021. (A289679)
  208. Lesieur, C.; Vuillon, L. (2014). “(Chapter 13) From Tilings to Fibers - Bio-mathematical Aspects of Fold Plasticity”. Oligomerization of Chemical and Biological Compounds. pp. 395-422. doi:10.5772/58577. 
  209. Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22; doi:10.1186/1687-1847-2012-22
  210. Dusko Letic, Nenad Cakic, Branko Davidovic, Ivana Berkovic and Eleonora Desnica, Some certain properties of the generalized hypercubical functions, Advances in Difference Equations, 2011, 2011:60; http://www.advancesindifferenceequations.com/content/pdf/1687-1847-2011-60.pdf.
  211. Pierre Letouzey, Shuo Li, and Wolfgang Steiner, Pointwise order of generalized Hofstadter functions G, H and beyond, arXiv:2410.00529 [cs.DM], 2024. See p. 1. (A100721)
  212. Vladimir A. Letsko, Some new results on consecutive equidivisible integers, arXiv preprint arXiv:1510.07081, 2015.
  213. Matthew C. Lettington, Karl Michael Schmidt, Divisor Functions and the Number of Sum Systems, arXiv:1910.02455 [math.NT], 2019. See also Integers (2020) Vol. 20, #A61. PDF (A131514, A273013)
  214. Ho-Hon Leung, Thotsaporn "Aek" Thanatipanonda, A Probabilistic Two-Pile Game, arXiv:1903.03274 [math.CO], 2019. (A001764, A006013)
  215. Paul LeVan, David Prier, "Improved Bounds on the Anti-Waring Number", Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.7. PDF
  216. Paul Levande, Two New Interpretations of the Fishburn Numbers and their Refined Generating Functions, arXiv:1006.3013.
  217. P. Levande, Fishburn diagrams, Fishburn numbers and their refined generating functions, Journal of Combinatorial Theory, Series A 120 (2013) 194-217.
  218. Viktor Levandovskyy, Christoph Koutschan and Oleksandr Motsak, On Two-generated Non-commutative Algebras Subject to the Affine Relation, arXiv:1108.1108, 2011.
  219. D. Levin, L. Pudwell, M. Riehl, A. Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014; http://www.etsu.edu/cas/math/pp2014/documents/talks/Riehl.pdf
  220. Alex Levine, Formal languages, quadratic Diophantine equations and the Heisenberg group, arXiv:2203.04849 [math.GR], 2022.
  221. Paul Levrie, 103.21 Closed form evaluation of a class of improper integrals, The Mathematical Gazette (2019) Vol. 103, Issue 557, 323-328. doi:10.1017/mag.2019.68
  222. Giles Levy, Solutions of second order recurrence relations, PhD Thesis (2010) Florida State University
  223. Thierry Levy, Schur-Weyl duality and the heat kernel measure on the unitary group, Advances in Mathematics, Volume 218, Issue 2, 1 June 2008, Pages 537-575.
  224. Thierry Lévy, The Number of Prefixes of Minimal Factorisations of a Cycle, The Electronic Journal of Combinatorics, 23(3) (2016), #P3.35
  225. B. Lewis, Partitioning a set, Math. Gaz., 86 (2002), 51-58.
  226. Lewis, Joel Brewster Generating trees and pattern avoidance in alternating permutations. Electron. J. Combin. 19 (2012), no. 1, Paper 21, 21 pp.
  227. J. B. Lewis, Pattern Avoidance for Alternating Permutations and Reading Words of Tableaux, Ph. D. Dissertation, Department of Mathematics, MIT, 2012.
  228. Max Lewis and Victor Scharaschkin, K-LEHMER AND K-CARMICHAEL NUMBERS, Integers, 16 (2016), #A80.
  229. Richard P. Lewis, Simon P. Norton, On a problem raised by P.J. Cameron, Discrete Mathematics, Volume 138, Issues 1-3, 6 March 1995, Pages 315-318.
  230. J. V. Leyendekkers and A. G. Shannon, Modular Rings and the Integer 3, Notes on Number Theory & Discrete Mathematics, 17 (2011), 47-51; http://www.nntdm.net/papers/nntdm-17/NNTDM-17-2-47-51.pdf.
  231. J. V. Leyendekkers and A. G. Shannon, Pellian sequence relationships among pi, e, sqrt(2), Notes on Number Theory and Discrete Mathematics, Vol. 18, 2012, No. 2, 58-62; http://www.nntdm.net/papers/nntdm-18/NNTDM-18-2-58-62.pdf.
  232. J.V. Leyendekkers and A.G. Shannon, The odd-number sequence: squares and sums, International Journal of Mathematical Education in Science and Technology, doi:10.1080/0020739X.2015.1044042, 7p.
  233. J. V. Leyendekkers, A. G. Shannon, Analysis of Primes Using Right-End-Digits and Integer Structure, NNTDM 14 (2008), 3, 1-10; http://www.nntdm.net/papers/nntdm-14/NNTDM-14-3-01-10.pdf
  234. J. V. Leyendekkers, A. G. Shannon, Landau's Fourth problem, Notes on Number Theory and Discrete Mathematics. Vol. 22, 2016, No. 4, 73–77.
  235. Boyu Li, Asymptotic Distributions for Block Statistics on Non-crossing Partitions, Master's Thesis, Univ. Waterloo, 2013; https://uwspace.uwaterloo.ca/bitstream/handle/10012/8179/Boyu_Li.pdf?sequence=1
  236. Chunlei LI, Nian LI and Matthew G. PARKER, Complementary Sequence Pairs of Types II and III, http://www.ii.uib.no/~matthew/Pairs.pdf; IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Vol. E95-A, No. 11, pp. 1819-1826, 2012.
  237. Gang Li, Generation of rooted trees and free trees, MSc thesis, U. Victoria (1996)
  238. Haomin Li, Computing a Basis for an Integer Lattice, Master's Thesis, Univ. of Waterloo (Ontario, Canada 2022). PDF (A033156)
  239. Huilan Li and Trueman MacHenry, Permanents and determinants, weighted isobaric polynomials and integral sequences, PDF preprint, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5
  240. Li, Huilan; MacHenry, Trueman The convolution ring of arithmetic functions and symmetric polynomials. Rocky Mountain J. Math. 43 (2013), no. 4, 1227-1259.
  241. Huaien Li and David C. Torney. A complete system of orthogonal step functions. Proc. Amer. Math. Soc. 132 (2004) 3491-3502.
  242. Ji Li, Combinatorial Logarithm and Point-Determining Cographs, Electronic Journal of Combinatorics, 19 (3) (2012), #P8.
  243. Jun Li, Golden Section Transform: Golden Mean of Golden Ratios, 2015; http://goldensectiontransform.org/image/Golden-Section-Transform_Golden-Mean-of-Golden-Ratios-Preview.pdf
  244. Min Li, Lawrence Ong, Sarah J. Johnson, Multi-Sender Index Coding for Collaborative Broadcasting: A Rank-Minimization Approach, IEEE Transactions on Communications (2018). doi:10.1109/TCOMM.2018.2877392
  245. Nelson Y. Li, Toufik Mansour, An identity involving Narayana numbers, European Journal of Combinatorics, Volume 29, Issue 3, April 2008, Pages 672-675.
  246. Li, Qingguo; Guo, Lankun doi:10.1016/j.ins.2013.03.032 Formal query systems on contexts and a representation of algebraic lattices. Inf. Sci. 239, 72-84 (2013).
  247. Runqiao Li, Andrew Y. Z. Wang, Composition analogues of Beck's conjectures on partitions, European Journal of Combinatorics (2019) Vol. 81, 210-220. doi:10.1016/j.ejc.2019.06.005
  248. Runqiao Li, Andrew Y. Z. Wang, Generalization of two problems of George Beck, Discrete Mathematics (2020) Vol. 343, Issue 5, Article No. 111805. doi:10.1016/j.disc.2019.111805
  249. Runqiao Li and Andrew Y. Z. Wang, The dual form of Beck type identities, Ramanujan J. (2021). doi:10.1007/s11139-021-00468-x (A090867, A265251)
  250. Rupert Li, Vincular Pattern Avoidance on Cyclic Permutations, arXiv:2107.12353 [math.CO], 2021. (A052319, A295264)
  251. Sean Li, Counting numerical semigroups by Frobenius number, multiplicity, and depth, arXiv:2208.14587 [math.CO], 2022. (A103580)
  252. Sean Li, On the number of generalized numerical semigroups, arXiv:2212.13740 [math.CO], 2022.
  253. Shuo Li, Zeckendorf expansion, Dirichlet series and infinite series involving the infinite Fibonacci word, arXiv:2106.05672 [math.NT], 2021. (A270788)
  254. Shuo Li, The characteristic sequence of the integers that are the sum of two squares is not morphic, arXiv:2404.08822 [math.NT], 2024. (A001481, A004215)
  255. Li Wenwei, Estimation of the Partition Number: After Hardy and Ramanujan, arXiv preprint arXiv:1612.05526, 2016
  256. Li Wenwei, On the Number of Conjugate Classes of Derangements, arXiv preprint arXiv:1612.08186, 2016
  257. Xiaoquin Li, Verifying Two Conjectures on Generalized Elite Primes, JIS 12 (2009) 09.4.7
  258. XiKun Li, JunLi Li, Bin Liu and CongFeng Qiao, The parametric symmetry and numbers of the entangled class of 2 × M × N system, SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY, Volume 54, Number 8, 1471-1475, doi:10.1007/s11433-011-4395-9
  259. X. Li, D. S. Stones, H. Wang, H. Deng, X. Liu and G, Wang, NetMODE: Network Motif Detection without Nauty, PLoS ONE 7(12): e50093. doi:10.1371/journal.pone.0050093.
  260. Weixiong Li, A note on the Bateman-Horn conjecture, Journal of Number Theory (2019). doi:10.1016/j.jnt.2019.07.025
  261. Yanbin Li, Qunying Liao, A class of new near-perfect numbers, J. Korean Math. Soc. 52 (2015), No. 4, pp. 751–763, doi:10.4134/JKMS.2015.52.4.751
  262. Yifei Li and Sheila Sundaram, Homology of Segre products of Boolean and subspace lattices, arXiv:2408.08421 [math.CO], 2024. See p. 17. (A212855)
  263. Yongbin Li, Junwei Zi, Yan Liu, Xiaojun Zhang, A note of values of minors for Hadamard matrices, arXiv:1905.04662 [math.CO], 2019. (A003432)
  264. Yue-Wu Li and Feng Qi, A New Closed-Form Formula of the Gauss Hypergeometric Function at Specific Arguments, Axioms (2024) Vol. 13, Art. No. 317. See p. 11 of 24. doi:10.3390/axioms13050317 (A001803, A025547, A350670)
  265. Yunnan Li, Li Guo, Braided dendriform and tridendriform algebras, and braided Hopf algebras of rooted trees, Journal of Algebraic Combinatorics (2020). doi:10.1007/s10801-020-00957-0 (A141200)
  266. Yutong Li, On total positivity of Riordan arrays, Illinois Wesleyan University (2020). HTML
  267. Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. (A001850, A006318, A050146, A123164)
  268. Huyile Liang, Jeffrey Remmel, Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017. (A000108, A000984, A001003, A001850, A001861, A002212, A003645, A004211, A006318, A007564, A024175, A026671, A039599, A047891, A055882, A059231, A059304, A060693, A064062, A084773, A091965, A151374, A172094)
  269. Aisha Liaqat, Muddassar Azam Sindhu, and Ghazanfar Farooq Siddiqui, Metamorphic Testing of an Artificially Intelligent Chess Game, IEEE Access (2020) Vol. 8, 174179-174190. doi:10.1109/ACCESS.2020.3024929
  270. P. Libbrecht, L. Goosen, Using ICTs to Facilitate Multilingual Mathematics Teaching and Learning, http://direct.hoplahup.net/copy_left/Using-ICTs-for-Multilingual-Mathematics-Teaching-and-Learning.pdf, 2014.
  271. Mark Libermann, Music of the (binary) trees, Language Log, http://languagelog.ldc.upenn.edu/nll/?p=3322#more-3322
  272. Leo Liberti, Carlile Lavor, "Discretizability" in Euclidean Distance Geometry, pp. 31-42, Springer Undergraduate Texts in Mathematics and Technology, 2017. doi:10.1007/978-3-319-60792-4_4
  273. Lyuben Lichev, Dieter Mitsche, On the modularity of 3-regular random graphs and random graphs with given degree sequences, arXiv:2007.15574 [math.PR], 2020. (A001190, A086317)
  274. Jacob Liddy, An algorithm to determine all odd primitive abundant numbers with d divisors, Honors Research Projects (2018), 728. PDF. (A006038)
  275. Dirk Liebhold, G Nebe, A Vazquez-Castro, Network coding and spherical buildings - arXiv preprint arXiv:1612.07177, 2016
  276. Dirk Liebhold, Gabriele Nebe, Angeles Vazquez-Castro, Network coding with flags, To appear in Designs, Codes, Cryptography, 2017.
  277. C. Lienkaemper, When do neural codes come from convex or good covers?, http://www.math.tamu.edu/REU/results/REU_2015/lienreport.pdf, 2015.
  278. C Lienkaemper, A Shiu, Z Woodstock, Obstructions to convexity in neural codes, Preprint 2015; http://www.math.tamu.edu/~annejls/papers/obstructions-convexity-neural.pdf
  279. Lievens, S.; Stoilova, N. I.; Van der Jeugt, J. Harmonic oscillators coupled by springs: discrete solutions as a Wigner quantum system. J. Math. Phys. 47 (2006), no. 11, 113504, 23 pp.
  280. Thomas M. Liggett, Wenpin Tang, One-dependent hard-core processes and colorings of the star graph, arXiv:1804.06877 [math.PR], 2018. (A001998)
  281. Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, 702 pages.
  282. "Like2do.com", web page retrieved March 2018, Gray Code.
  283. Benny Lim, Prime Numbers Generated From Highly Composite Numbers, Parabola (2018) Vol. 54, Issue 3. Abstract (A000668, A002182, A014545, A057704)
  284. Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim, New Benchmarks for Learning on Non-Homophilous Graphs, arXiv:2104.01404 [cs.LG], 2021. We collected the OEIS dataset displayed in the bottom right of Figure 4. The nodes are entries in the Online Encyclopedia of Integer Sequences [49], and directed edges link an entry to any other entry that it cites. In analogy to arXiv-year and snap-patents, the node labels are the time of posting of the sequence. However, in this case the graph relationships are homophilous, even as we vary the number of distinct classes (time periods). This is in part due to differences between posting in this online encyclopedia and publication of academic papers or patents. For instance, there is less overhead to posting an entry in the OEIS, so users often post separate related entries and variants of these entries in rapid succession. Also, an entry in the encyclopedia often inspires other people to work on similar entries, which can be created in much less time than an academic follow-up work to a given paper. These related entries tend to cite each other, which contributes to homophilic relationships over time. Thus, the data here does not follow the special temporal citation structure of academic publications and patents.
  285. Lek-Heng Lim, Interview of Shmuel Friedland for the ILAS, 2017.
  286. Kevin Limanta, Hopein Christofen Tang, and Yozef Tjandra, Permutation-generated maps between Dyck paths, arXiv:2105.14439 [math.CO], 2021. (A080936, A344898)
  287. Kevin Limanta and Norman J. Wildberger, Super Catalan Numbers, Chromogeometry, and Fourier Summation over Finite Fields, arXiv:2108.10191 [math.CO], 2021. (A000108)
  288. A. W. Lin, S. Zhou, A linear-time algorithm for the orbit problem over cyclic groups, http://homepages.inf.ed.ac.uk/v1awidja/papers/concur14.pdf, 2014.
  289. Feiyang Lin, F-polynomials for the R-Kronecker quiver, University of Minnesota, Research Experiences for Undergrads (2020). PDF (A281260)
  290. Xi Lin, Dirk Schmelter, Sadaf Imanian, Horst Hintze-Bruening, Hierarchically Ordered α-Zirconium Phosphate Platelets in Aqueous Phase with Empty Liquid, Scientific Reports (2019) Vol. 9, Article No. 16389. doi:10.1038/s41598-019-51934-y (A093766)
  291. Xin Lin, On the Recurrence Properties of Narayana's Cows Sequence, Symmetry (2021) Vol. 13, 149. doi:10.3390/sym13010149 (A000032, A000035, A000073, A000930)
  292. Yen-Chi Roger Lin, Asymptotic Formula for Symmetric Involutions, arXiv preprint arXiv:1310.0988, 2013.
  293. Lin, Yiling; Mishima, Miwako; Satoh, Junya; Jimbo, Masakazu Optimal equi-difference conflict-avoiding codes of odd length and weight three. Finite Fields Appl. 26 (2014), 49-68.
  294. Zhicong Lin, Restricted inversion sequences and enhanced 3-noncrossing partitions, arXiv:1706.07213 [math.CO], 2017.
  295. Zhicong Lin, Patterns of relation triples in inversion and ascent sequences, Theoretical Computer Science (2020) Vol. 804, 115-125. doi:10.1016/j.tcs.2019.11.007
  296. Zhicong Lin, Shishuo Fu, On 120-avoiding inversion and ascent sequences, arXiv:2003.11813 [math.CO], 2020. (A098568, A113227)
  297. Zhicong Lin, D Kim, A sextuple equidistribution arising in Pattern Avoidance, arXiv preprint arXiv:1612.02964, 2016.
  298. Zhicong Lin, Jun Ma, Shi-Mei Ma, and Yanghongbo Zhou, Weakly increasing trees on a multiset, Advances in Applied Mathematics, Vol. 129, {2021) 102206. doi:10.1016/j.aam.2021.102206
  299. Zhicong Lin, Shi-Mei Ma, David G. L. Wang, and Liuquan Wang, Positivity and divisibility of alternating descent polynomials, arXiv:2011.02685 [math.CO], 2020. See also Ramanujan J. (2021). doi:10.1007/s11139-021-00460-5 (A002105, A034428)
  300. Zhicong Lin, Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672. doi:10.1016/j.amc.2019.124672 (A000079, A000110, A022493, A047970, A091768, A098569, A102038, A108304, A113227, A117106, A249562)
  301. ZHICONG LIN AND JIANG ZENG, On the number of congruence classes of paths, Arxiv preprint arXiv:1112.4026, 2011.
  302. Zhiwei Lin, H Wang, CH Elzinga, Concordance and the Smallest Covering Set of Preference Orderings, arXiv preprint arXiv:1609.04722, 2016.
  303. Zhicong Lin, David G.L. Wang, and Tongyuan Zhao, A decomposition of ballot permutations, pattern avoidance and Gessel walks, arXiv:2103.04599 [math.CO], 2021. (A000246, A005817, A071724, A135404, A151396, A208355)
  304. L. Lindroos, A. Sills and H. Wang, Odd fibbinary numbers and the golden ratio, Fib. Q., 52 (2014), 61-65.
  305. Jim Lindsay, Toufik Mansour and Mark Shattuck, A new combinatorial interpretation of a g-analogue of the Lah numbers, Journal of Combinatorics, Volume 2, Number 2, 245-264, 2011; http://intlpress.com/JOC/p/2011/JOC-2-2-a4-Lindsay.pdf
  306. Nathan Lindzey, Matchings and Representation Theory, Ph.D. thesis, combinatorics and optimization, University of Waterloo, Ontario, Canada, 2018. PDF
  307. Steven Linton, James Propp, Tom Roby, Julian West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, Journal of Integer Sequences, Vol. 15 (2012), #12.9.1.
  308. S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (2), (1999), 255-266.
  309. Svante Linusson, Samu Potka, New properties of the Edelman-Greene bijection, arXiv:1804.10034 [math.CO], 2018. (A003121)
  310. Charlie Liou and Anthony Mendes, Matrix Representations From Labeled Trees, J. Int. Seq. (2023) Vol. 26, No. 7, Article 23.7.6. PDF (A000272, A217420)
  311. Luke Lippstreu, Jorge Mago, Marcus Spradlin, Anastasia Volovich, Weak Separation, Positivity and Extremal Yangian Invariants, arXiv:1906.11034 [hep-th], 2019. (A054365) We are grateful to A. Schreiber for collaboration on [28] which inspired this project andfor finding [the OEIS] based on the first few entries of Tab. 1.
  312. Zsuzsanna Lipták, Open problems on prefix normal words, University of Verona, Italy, 2018. PDF, also in Dagstuhl Reports (2018) Vol. 8, Issue 7, 59-61. Abstract (A194850, A238109, A238110)
  313. Kálmán Liptai and László Szalay, Random inhomogeneous binary recurrences, Annales Univ. Sci. Budapest, Sect. Comp. 54 (2023) 253–263. PDF (A033192)
  314. Liskiewicz, Maciej; Ogihara, Mitsunori; Toda, Seinosuke, The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes. Theoret. Comput. Sci. 304 (2003), no. 1-3, 129-156.
  315. V. A. Liskovets, Enumerative identities for circulat graphs of special prime order, Discr. Math, Proc. Inst. Math., NAS of Belarus 8 (2001) 68-75
  316. Valery A. Liskovets, "Some Easily Derivable Integer Sequences", J. Integer Sequences, Volume 3, 2000, Article 00.2.2.
  317. Valery A. Liskovets, "A Note on the Total Number of Double Eulerian Circuits in Multigraphs", J. Integer Sequences, Volume 5, 2002, Article 02.2.5.
  318. V. A. Liskovets, arXiv:math.CO/0104131, Some identities for enumerators of circulant graphs, J. of Algebr. Combin., v. 18:3 (2003), 189-209.
  319. V. A. Liskovets, doi:10.1016/j.dam.2005.06.009, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
  320. V. A. Liskovets and A. D. Mednykh, On the number of connected and disconnected coverings over a manifold, ARS MATHEMATICA CONTEMPORANEA, 2 (2009) 181-189.
  321. V. A. Liskovets and T. R. Walsh, doi:10.1016/j.aam.2005.03.006, Counting unrooted maps on the plane, Advances in Applied Math. 36, No.4 (2006), 364-387.
  322. Lisonek, Petr, Combinatorial families enumerated by quasi-polynomials. J. Combin. Theory Ser. A 114 (2007), no. 4, 619-630.
  323. Jonah Lissner, Theoretical Physics Utilizations Of Riemann Zeta Function Odd Positive Integer Three, ResearchGate (2024). Abstract (A002117)
  324. Nanna Holmgaard List, Timothé Romain Léo Melin, Martin van Horn, Trond Saue, Beyond the electric-dipole approximation in simulations of X-ray absorption spectroscopy: Lessons from relativistic theory, arXiv:2001.10738 [physics.chem-ph], 2020. (A005043)
  325. Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019. (A000027, A000108, A001002, A001263, A001700, A003168, A006013, A006632, A024492, A025748, A025749, A025750, A025751, A025752, A025753, A025754, A025755, A027307, A034171, A034255, A034687, A034789, A034904, A034996, A035097, A035323, A048779, A049140, A055392, A063018, A063019, A063020, A063033, A085614, A097188, A103779, A118971, A121988, A129442, A130564, A130565, A158826, A158827, A158828, A192945, A192946, A214372, A214692, A217361, A217362, A219535, A219536, A228966, A231554, A234466, A234513, A234573, A235340, A236339, A249924, A250885, A250886, A250887, A250888, A276310, A276314, A276315, A276316, A295541)
  326. Litsyn, S.; Shevelev, V. (2007). “On factorization of integers with restrictions on the exponents”. INTEGERS: El. J. Comb. Numb. Theory 7: p. A33. 
  327. Max A. Little and Ugur Kayas, Polymorphic dynamic programming by algebraic shortcut fusion, arXiv:2107.01752 [cs.DS], 2021. (A001850)
  328. Andy Liu, Is Parallelism an Equivalence Relation?, The College Mathematics Journal, 42 (2011), p. 372; http://www.jstor.org/pss/10.4169/college.math.j.42.5.372.
  329. Bowie Liu and Dennis Wong, Generating Cyclic Rotation Gray Codes for Stamp Foldings and Semi-meanders, Combinatorial Algorithms: 34th Int'l Workshop (IWOCA 2023) Lect. Notes Comp. Sci. (LNCS Vol. 13889) Springer, Cham, 271–281. doi:10.1007/978-3-031-34347-6_23
  330. Ethan Liu, On the Structure and Generators of the Chromatic Algebra, Primes Conference, MIT (2023), p. 18/23. PDF (A005043)
  331. Feihu Liu and Guoce Xin, Simple Generating Functions for Certain Young Tableaux with Periodic Walls, arXiv:2401.14627 [math.CO], 2024. (A079489, A213403, A213404, A213405, A213406)
  332. Hong Liu, Péter Pál Pach, Richárd Palincza, The number of maximum primitive sets of integers. arXiv:1805.06341 [math.CO], 2018. (A174094)
  333. Ji-Cai Liu, A p-adic analogue of Chan and Verrill's formula for 1/π, arXiv:2008.06675 [math.NT], 2020. (A125143)
  334. Ji-Cai Liu, Long Li, and Su-Dan Wang, Some congruences on Delannoy numbers and Schröder numbers, Int. J. Number Theory (2018), pp 1-7, doi:10.1142/S1793042118501221.
  335. Jia Liu, Performance analysis of systematic linear codes over AWGN channels, Published in: RFID Technology and Applications (RFID-TA), 2016 IEEE International Conference on, 2016; doi:10.1109/RFID-TA.2016.7750727
  336. Jia Liu, L Lalouat, E Drouard, R Orobtchouk, Binary coded patterns for photon control using necklace problem concept, Optics Express Vol. 24, Issue 2, pp. 1133-1142 (2016) doi:10.1364/OE.24.001133
  337. Jin-Yi Liu, On a problem of team hiring, hal-02485153, Computer Science [cs], 2020. Abstract (A308729, A308860)
  338. Kevin Liu, Planar Tanglegram Layouts and Single Edge Insertion, Séminaire Lotharingien de Combinatoire (2022) Vol. 86, Issue B, Art. No. 45. PDF (A349409)
  339. Li Liu and Yi Wang, On the log-convexity of combinatorial sequences (2006), arXiv:math/0602672; Advances in Applied Mathematics, Volume 39, Issue 4, October 2007, Pages 453-476.
  340. Lily L. Liu, Positivity of three-term recurrence sequences, Electronic J. Combinatorics, 17 (2010), #R57.
  341. Lintao Liu, Xuehu Yan, Yuliang Lu, and Huaixi Wang, 2-threshold Ideal Secret Sharing Schemes Can Be Uniquely Modeled by Latin Squares, National University of Defense Technology, Hefei, China, (2019). PDF (A002860)
  342. Mengmeng Liu, Andrew Yezhou Wang, The Number of Designated Parts in Compositions with Restricted Parts, J. Int. Seq., Vol. 23 (2020), Article 20.1.8. HTML (A006367, A010049, A029907, A102702, A239342)
  343. Minglei Liu, Ce Zhu, Index assignment for 3-description lattice vector quantization based on A2 lattice, Signal Processing, Volume 88, Issue 11, November 2008, Pages 2754-2763.
  344. Ricky I. Liu, K Mészáros, AH Morales, Flow polytopes and the space of diagonal harmonics, arXiv preprint arXiv:1610.08370, 2016.
  345. Rui Liu and Feng-Zhen Zhao, On the Sums of Reciprocal Hyperfibonacci Numbers and Hyperlucas Numbers, Journal of Integer Sequences, Vol. 15 (2012), #12.4.5.
  346. Rui-Li Liu, Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7. HTML (A000166, A000681, A001205, A001499, A002135, A002137, A002212, A002895, A005189, A005572, A006595)
  347. Rui-Li Liu and Feng-Zhen Zhao, Log-concavity of two sequences related to Cauchy numbers of two kinds</a>, Online J. Analytic Combinatorics, Issue 14 (2019), #09. PDF (A002657, A002790, A006232, A006233)
  348. Sh-Chung Liu, Jun Ma and Yeong-Nan Yeh, doi:10.1111/j.1467-9590.2008.00415.x, Dyck Paths with Peak- and Valley-Avoiding Sets], Studies in Appl. Math. 121 (2008) 263-289.
  349. Shao-Hua Liu, The operators F_i on permutations, 132-avoiding permutations and inversions, Discrete Math., 342 (2019), 2402-2414.
  350. XIAOJUN LIU, MOTOHICO MULASE AND ADAM SORKIN, Quantum curves for simple Hurwitz numbers of an arbitrary base curve, PDF, 2013.
  351. Yanxin Liu, Yidong Sun, and Di Zhao, Graphs and Combinatorics (2023) Vol. 39, Art. No. 19. doi:10.1007/s00373-023-02614-2
  352. Yaping Liu, On the Recursiveness of Pascal Sequences, Global J. of Pure and Appl. Math. (2022) Vol. 18, No. 1, 71-80. PDF (A005809, A051255)
  353. Yusen Liu, Fangyuan He, Haodi Zhang, Guozheng Rao,Zhiyong Feng, Yi Zhou, How Well Do Machines Perform on IQ tests: a Comparison Study on a Large-Scale Dataset, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), 6110-6116. doi:10.24963/ijcai.2019/846 Also, there are a number of datasets that are highly related to IQ test questions as well. For instance, the Online Encyclopedia of Integer Sequences (OEIS) contains over a quarter-million ... math sequences.
  354. Zhengwei Liu, William Norledge, Adrian Ocneanu, The adjoint braid arrangement as a combinatorial Lie algebra via the Steinmann relations, arXiv:1901.03243 [math.CO], 2019. (A034997)
  355. Antonio Gracia Llorente, Arithmetic Progression-Representing Constants, OSF Preprint, 2023. doi:10.31219/osf.io/gdqt2 (A020725)
  356. E. Keith Lloyd, The standard deviation of 1, 2, ..., n - Pell's equation and rational triangles, Math. Gaz., July 1997, 231-243.
  357. E. Keith Lloyd, Letter to the Editor, Mathematical Gazette, Vol. 83, Issue 49, March 1999, p. 134. doi:10.1017/S0025557200208255
  358. Seth Lloyd, Reevu Maity, Efficient implementation of unitary transformations, arXiv:1901.03431 [quant-ph], 2019. Page 8: A standard reference for free Lie algebras is [the OEIS].
  359. Jason Lo and Karissa Wong, A note on Bridgeland stability conditions and Catalan numbers, arXiv:2012.12851 [math.AG], 2020. (A000108) In fact, the authors did not recognise the connection between equations of the form (2.2.1) and Catalan numbers at first. It was only after some coefficients of u were computed using a simple program [13], and having those coefficients compared against the OEIS database [9] that the connection became apparent.
  360. Y.-H. Lo, H.-L. Fu, Y.-H. Lin, Weighted maximum matchings and optimal equi-difference conflict-avoiding codes, Designs, Codes and Cryptography, 76 (2) (2015) 361-371 doi:10.1007/s10623-014-9961-5
  361. Yuan-Hsun Lo, Kenneth W. Shum, Wing Shing Wong, Yijin Zhang, Multichannel Conflict-Avoiding Codes of Weights Three and Four, arXiv:2009.11754 [cs.IT], 2020. (A000041, A002326)
  362. Yuan-Hsun Lo, Yijin Zhang, Yi Chen, Hung-Lin Fu, Wing Shing Wong, The Global Packing Number of a Fat-Tree Network, IEEE Transactions on Information Theory, Vol. 63, No. 8, August 2017. doi:10.1109/TIT.2017.2710184
  363. Giovanni Lo Bianco, Xavier Lorca, Charlotte Truchet, Estimating the Number of Solutions of Cardinality Constraints Through "range" and "roots" Decompositions, International Conference on Principles and Practice of Constraint Programming (CP 2019): Principles and Practice of Constraint Programming, Lecture Notes in Computer Science Vol. 11802, 317-332. doi:10.1007/978-3-030-30048-7_19
  364. Loday, Jean-Louis, Inversion of integral series enumerating planar trees. Sém. Lothar. Combin. 53 (2004/06), Art. B53d, 16 pp.
  365. Jean-Louis Loday, On the algebra of quasi-shuffles, arXiv preprint arXiv:math/0506498, 2005.
  366. D. E. Loeb, The World of Generating Functions and Umbral Calculus, in Gian-Carlo Rota on Combinatorics: Introductory Papers and Commentaries, Volume 1, editor: Joseph P. S. Kung, Birkhauser (1995) 201-216.
  367. Joshua Logan-Rung, Kronecker Products and Closed Walks on Graphs, Bachelor Thesis, Worcester Polytechnic Institute (2020). PDF
  368. Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017.
  369. Andrew Lohr, Summations of Linear Recurrent Sequences, arXiv preprint arXiv:1710.11074, 2017.
  370. Andrew Lohr, Several topics in experimental mathematics, PhD Dissertation, Math. Dept., Rutgers, April 2018 arXiv:1805.00076 [math.CO]. (A000435, A002426, A005789, A298591)
  371. Andrew Lohr, Doron Zeilberger, On the limiting distributions of the total height on families of trees, Integers (2018) 18, Article #A32. Abstract (A000435)
  372. S. Loktev, Weight Multiplicity Polynomials of multi-variable Weyl Modules, Moscow Math. Journal, Vol. 10 (No. 1, 2010), pp. 215-229; arXiv:0806.0170
  373. Lisa Lokteva, Constructing Rational Homology 3-Spheres That Bound Rational Homology 4-Balls, arXiv:2208.14850 [math.GT], 2022. (A003501, A004253)
  374. Peter D. Loly, Ian D. Cameron, Frierson's 1907 Parameterization of Compound Magic Squares Extended to Orders 3, = 1, 2, 3, …, with Information Entropy, arXiv:2008.11020 [math.HO], 2020. (A000384, A000680, A001147, A052386)
  375. H. A. Lonnemo, A Method for Complete Decomposition of a Multiple Tone Signal using a DFT, Proceedings of the World Congress on Engineering 2012, Vol. II, WCE 2012, July 4-6, 2012, London, U.K., http://www.iaeng.org/publication/WCE2012/WCE2012_pp1219-1225.pdf.
  376. David Lonoff and Jonah Ostroff, Symmetric Permutations Avoiding Two Patterns, Annals of Combinatorics 14 (1) pp. 143-158, Springer, 2010; http://www.math.upenn.edu/~lonoff/pdfs/spatp.pdf.
  377. P. A. Loomis, An Introduction to Digit Product Sequences, Journal of Recreational Mathematics 32 (2003-2004), 147-151.
  378. P. A. Loomis, New families of solitary numbers, J. Algebra and Applications, 14 (No. 9, 2015), #1540004 (6 pages).
  379. Paul Loomis, Michael Plytage and John Polhill, Summing up the Euler 'phi' function, The College Mathematics Journal, vol. 39 (#1), pp. 34-42.
  380. Andreas Loos, Was finden Sie schöner – 2,3,5,7,11 oder 0,1,1,2,3,5? [What do you find more beautiful - 2,3,5,7,11 or 0,1,1,2,3,5?], Zeit Online, Germany, March 15 2018; http://www.zeit.de/wissen/2018-03/datenbank-mathematik-digital-jubilaeum-zahlenfolgen
  381. Viktor Lopatkin, Pasha Zusmanovich, Commutative Lie algebras and commutative cohomology in characteristic 2, arXiv:1907.03690 [math.KT], 2019. (A052944)
  382. Antonio Vera López, Luis Martínez, Antonio Vera Pérez, Beatriz Vera Pérez, Olga Basova, Combinatorics related to Higman's conjecture I: Parallelogramic digraphs and dispositions, Linear Algebra and its Applications, Volume 530, 1 October 2017, p. 414-444. doi:10.1016/j.laa.2017.05.027
  383. Nacho López, H Pérez-Rosés, J Pujolas, A Moore-like bound for mixed abelian Cayley graphs, Preprint, 2016; http://discretemath.upc.edu/jmda16/wp-content/uploads/2015/09/JMDA2016_paper_32.pdf; also Electronic Notes in Discrete Mathematics, Volume 54, October 2016, Pages 145-150; doi:10.1016/j.endm.2016.09.026
  384. López, Nacho; Pérez-Rosés, Hebert; Pujolàs, Jordi doi:10.1016/j.dam.2017.04.018 The degree/diameter problem for mixed abelian Cayley graphs. Discrete Appl. Math. 231, 190-197 (2017). (massive overlap with 2016 publication)
  385. Ronald Orozco López, Rogers-Szegö Polynomials, (s,t)-Derivatives of Partial Theta Function, and Generalized Simplicial d-Polytopic Numbers, I, arXiv:2408.08943 [math.CO], 2024. See p. 13. (A006096)
  386. S. C. López, F. A. Muntaner-Batle and M. Rius-Font, The Jumping Knight and Other (Super) Edge-Magic Constructions, Mediterranean Journal of Mathematics, Nov. 2013; doi:10.1007/s00009-013-0360-3.
  387. Santiago López de Medrano, On the genera of moment-angle manifolds associated to dual-neighborly polytopes, combinatorial formulas and sequences, arXiv:2003.07508 [math.GT], 2020. (A000337, A027608, A055580, A211386) The generating functions given in the Sloane Encyclopedia of Sequences for those few cases gave us the clue to solve our problem. Our debt to the Encyclopedia is partially covered by giving new formulas and a new topological interpretation to some of its sequences, as well as an infinite family of sequences generalizing them and, hopefully, by suggesting generalizations of their interpretations. … the appearance of the sequences of genera for a few small values of p in the Sloane Encyclopedia of Sequences ([Sl]), which included generating functions for them that suggested immediately a nice and simple conjecture for all dimensions.
  388. Janathan Loranger, Warm dark matter collapse: real space analysis methods, Thesis submitted in partial fulfillment of the requirements for the degree of master of science, The University of Guelph, 2013, http://elk.library.ubc.ca/bitstream/handle/2429/45432/ubc_2014_spring_loranger_jonathan.pdf?sequence=3.
  389. Nick Lord, Problem Corner, Math. Gaz. (2023), Vol. 107, Issue 570, 550-555. doi:10.1017/mag.2023.126
  390. Nick Lord and Des MacHale, Infinitely many composites, Math. Gazette (2024) Vol. 108, Issue 571, pp. 20-26. doi:10.1017/mag.2024.4
  391. Adam Lore, The Digits of Infinity, 2021. [1] (A001146, A206636)
  392. Paweł Lorek, Piotr Markowski, Conditional gambler's ruin problem with arbitrary winning and losing probabilities with applications, arXiv:1812.00687 [math.PR], 2018. (A011973)
  393. Paweł Lorek, Piotr Markowski, Absorption time and absorption probabilities for a family of multidimensional gambler models, arXiv:1812.00690 [math.PR], 2018. (A303872)
  394. Piotr Lorenc, Jakub Jan Ludew, Mariusz Pleszczyński, Alicja Samulewicz, Roman Wituła, Iterated integrals of Faulhaber polynomials and some properties of their roots, 2018. PDF (A251926)
  395. R Lorentz, S Tringali, CH Yan, Generalized Goncarov polynomials, arXiv preprint arXiv:1511.04039, 2015.
  396. Dino Lorenzini, Mentzelos Melistas, Arvind Suresh, Makoto Suwama, and Haiyang Wang, Integer Dynamics, arXiv:2105.14361 [math.NT], 2021. (A161872)
  397. Dino Lorenzini, Z Xiang, Integral points on variable separated curves, Preprint 2016; http://alpha.math.uga.edu/~lorenz/IntegralPoints.pdf
  398. Pavel Loskot and Norman C. Beaulieu, On monotonicity of the hypersphere volume and area, Journal of Geometry, Volume 87, Numbers 1-2 / November, 2007.
  399. Guy Louchard and Helmut Prodinger, "The Largest Missing Value in a Composition of an Integer and Some Allouche-Shallit-type Identities", Journal of Integer Sequences, Vol. 16 (2013), #13.2.2.
  400. W. P. Lougee and J. K. MacKie-Mason, Economics and Usage of Digital Libraries: Byting the Bullet, http://quod.lib.umich.edu/s/spobooks/5621225.0001.001?rgn=main;view=fulltext.
  401. J. Loughry, J. I. van Hemert and L. Schoofs. Efficiently Enumerating the Subsets of a Set, preprint.
  402. Loureiro, Ana F.; Maroni, P. Quadratic decomposition of Laguerre polynomials via lowering operators. J. Approx. Theory 163 (2011), no. 7, 888-903.
  403. Ana Filipa Loureiro and Pascal Maroni, Polynomial sequences associated with the classical linear functionals, Numerical Algorithms, June 2012, Volume 60, Issue 2, pp 297-314.
  404. Ana F. Loureiro and S. Yakubovich, Central factorials under the Kontorovich-Lebedev transform of polynomials, Integral Transforms and Special Functions, 2012, doi:10.1080/10652469.2012.672325
  405. Joel Louwsma, On solutions of ∑i=1n 1/xi = 1 in integers of the form 2a × kb, where k is a fixed odd positive integer, arXiv:2402.09515 [math.NT], 2024. (A002966, A006585)
  406. Antonio Molina Lovett, Jeffrey Shallit, Optimal Regular Expressions for Permutations, arXiv:1812.06347 [cs.FL], 2018. (A320460)
  407. Richard M. Low and Ardak Kapbasov, Non-Attacking Bishop and King Positions on Regular and Cylindrical Chessboards, Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.1.
  408. Val Lowndes, Stuart Berry, Chris Parkes, Ovidiu Bagdasar, Nicolae Popovici, Further Use of Heuristic Methods, In: Berry S., Lowndes V., Trovati M. (eds) Guide to Computational Modelling for Decision Processes. Simulation Foundations, Methods and Applications. doi:10.1007/978-3-319-55417-4_7
  409. David Lowry-Duda, A short note on gaps between powers of consecutive primes, arXiv:1709.07847 [math.NT], 2017.
  410. Dawei Lu and Zexi Song, Some new continued fraction estimates of the Somos' quadratic recurrence constant, Journal of Number Theory, Volume 155, October 2015, Pages 36–45. (A052129, A112302, A114124, A116603)
  411. Dawei Lu, Xiaoguang Wang, Ruiqing Xu, Some New Exponential-Function Estimates of the Somos’ Quadratic Recurrence Constant, Results in Mathematics (2019) Vol. 74, No. 1, 6. doi:10.1007/s00025-018-0928-0 (A052129, A112302, A114124, A116603)
  412. Jiaxi Lu and Yuanzhe Ding, A skeleton model to enumerate standard puzzle sequences, arXiv:2106.09471 [math.CO], 2021. (A000364, A009766, A102625, A122647, A227656, A261683) After computing a large number of standard puzzle sequences, he found that only a small part of them already appear in OEIS [14], and then he gave combinatorial proofs of some of them. Then, we check it in OEIS [14], and find the formula of it
  413. Lu, Qing Lin doi:10.1007/s10114-016-5292-y Skew Motzkin paths, Acta Math. Sin., Engl. Ser. 33, No. 5, 657-667 (2017).
  414. Q. Lu, W. Zheng and Z. Zheng, On the distribution of Jacobi sums, arXiv preprint arXiv:1305.3405, 2013.
  415. Ya-Ping Lu, Shu-Fang Deng, An upper bound for the prime gap, arXiv:2007.15282 [math.GM], 2020. (A005250)
  416. Zhentao Lu, Elementary proofs of generalized continued fraction formulae for E, arXiv:1907.05563 [math.NT], 2019. Computer-aided verification of generalized continued fraction formulae. … Step 2. Get the recursive formulae of A_n and B_n using [the OEIS]. Step 3. Compute the first few terms of A_n and B_n and using WolframAlpha and OEIS to guess a closed-form of them. …
  417. Zhipeng Lu, Symmetric permutation invariants in some tensor products, arXiv:2103.02168 [math.CO], 2021. (A081285)
  418. Florian Luca, Arithmetic Functions of Fibonacci Numbers, The Fibonacci Quarterly (1999) Vol. 37, No. 3, 265-268. PDF (A065449, A065451, A063375)
  419. Florian Luca, Problem H-590, Advanced Problems and Solutions, The Fibonacci Quarterly (2002) Vol. 40, No. 5, 472. PDF; Arithmetic Functions of Fibonacci Numbers, Solution to Problem H-590 by J.-Ch. Schlage-Puchta and J. Spilker, ibid. (2002) Vol. 41, No. 4, 382-384. PDF (A063477, A063478, A074698, A075775)
  420. Luca, Florian, Prime factors of Motzkin numbers. Ars Combin. 80 (2006), 87-96.
  421. F. Luca, On the sum of the first n primes being a square, Lithuanian Mathematical Journal, Volume 47, Number 3 / July, 2007.
  422. F. Luca, D. Marques, Perfect powers in the summatory function of the power tower, J. Theor. Nombr. Bordeaux 22 (3) (2010) 703-718 doi:10.5802/jtnb.740
  423. F. Luca, D. Marques and P. Stanica, doi:10.1016/j.jnt.2009.07.015 On the spacings between C-nomial coefficients, J. Num. Theory 130 (2010) 82-100
  424. F. Luca, A. O. Munagi, The Number Of Permutations Which Form Arithmetic Progressions Modulo m, Annals of the Alexandru Ioan Cuza University, 2014, doi:10.2478/aicu-2014-0053.
  425. Florian Luca, Attila Pethő, and László Szalay, Duplications in the k-generalized Fibonacci sequences, New York J. Math. (2021) Vol. 27, 1115–1133. PDF (A118800)
  426. F. Luca, A. Pizarro-Madariaga, C. Pomerance, On the counting function of irregular primes, doi:10.1016/j.indag.2014.09.002 Indag. Mathem. 26 (1) (2015) 147-161 PDF, 2014.
  427. Florian Luca and A. Srinivasan, Markov equation with Fibonacci components, Fib. Q., 56 (No. 2, 2018), 126-129.
  428. F. Luca, E. Tron, The Distribution of Self-Fibonacci Divisors, arXiv preprint arXiv:1410.2489, 2014
  429. Florian Luca and Juan Luis Varona, Multiperfect numbers on lines of the Pascal triangle, Journal of Number Theory, Volume 129, Issue 5, May 2009, Pages 1136-1148.
  430. Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419–427
  431. Giovanni Lucca, Circle chains inscribed in symmetrical lunes and integer sequences, Forum Geometricorum, Volume 17 (2017), p. 21-29.
  432. Giovanni Lucca, Chains of tangent circles inscribed in a triangle, Forum Geometricorum, Volume 17 (2017), p. 41-44.
  433. Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55. PDF (A006051, A008844, A046172, A055792, A055793, A055997, A081068, A171640, A247335)
  434. Giovanni Lucca, Integer Sequences and Circle Chains Inside a Tangential Quadrilateral, Sangaku Journal of Mathematics (SJM, 2018) Vol. 2, 31-40. PDF (A000302, A001019)
  435. Giovanni Lucca, Infinite Circle Chains in Between Two Internally Tangent Circles and Integer Sequences, International Journal of Geometry (2018) Vol. 7, 43-49. PDF (A000124, A002522, A002016, A104249, A143689, A005448, A058331, A084849, A130883, A001844, A116668, A140066, A134238, A192136, A005891, A056107, A056108, A056106, A056109, A056105, A003215, A140063, A140065, A100752, A069099, A053755, A054567, A054556, A054569, A054554, A033951, A054552, A006137, A276819, A038764, A080855, A064225, A140064, A081267, A117625, A212656, A172043, A145995, A190816, A136392, A085473, A080859)
  436. Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16. Abstract (A001519, A001653, A002315, A002878, A007805, A049629, A078922, A078988, A078989, A097314, A097315, A097726, A097727, A097729, A097730, A097732, A097733, A097735, A097736, A097738, A097739, A097741, A097742, A097766, A097767, A097769, A097770, A097772, A097773, A097775, A097776, A097783, A097834, A097835, A097837, A097838, A097840, A097841, A097842, A097843, A097845, A098244, A098246, A098247, A098249, A098250, A098252, A098253, A098255, A098256, A098258, A098259, A098261, A098262, A098291, A098292)
  437. Giovanni Lucca, Integer Sequences, Pythagorean Triplets and Circle Chains Inscribed Inside a Parabola, International Journal of Geometry (2019) Vol. 8, 22-31. PDF (A005408, A046092, A001844)
  438. Giovanni Lucca, Circle chains inside the arbelos and integer sequences, Int'l J. Geom. (2023) Vol. 12, No. 1, 71-82. PDF (A000027, A000290, A005843, A055792, A055793, A055997, A082405, A115032, A171640, A247335)
  439. Angelo Lucia and Amanda Young, A Nonvanishing Spectral Gap for AKLT Models on Generalized Decorated Graphs, arXiv:2212.11872 [math-ph], 2022. (A204420)
  440. J. M. Luck, On the frequencies of patterns of rises and falls, arXiv preprint arXiv:1309.7764, 2013.
  441. Jean-Marc Luck, Revisiting log-periodic oscillations, arXiv:2403.00432 [cond-mat.stat-mech], 2024. (A000108, A019497, A053294, A073121)
  442. JM Luck, A Mehta, Universality in survivor distributions: Characterising the winners of competitive dynamics, arXiv preprint arXiv:1511.04340, 2015.
  443. Thomas Luckner, Research Statement, Flagler College (2024). See p. 7. PDF (A076335, A076336, A101036)
  444. David Luebke, Martin Reddy, Jonathan D. Cohen, Amitabh Varshney, Benjamin Watson, Robert Huebner, References, Level of Detail for 3D Graphics, 2003, Pages 349-369.
  445. M. A. Lujan Moreno, Object Oriented Linear Algebra, M. Phil. Thesis, Dept. Computer Science, University Of Manchester, 1999.
  446. M. A. Lujan Moreno, OoLaLa -- From Numerical Linear Algebra to Compiler Technology for Design Patterns, PhD thesis, Department of Computer Science, University of Manchester, 2002.
  447. Szymon Łukaszyk and Wawrzyniec Bieniawski, Assembly Theory of Binary Messages (How to Assemble a Black Hole and Use it to Assemble New Binary Information?), Preprints (2024). doi:10.20944/preprints202401.1113.v1 (A000014, A000031, A001405, A007318, A014701, A167268)
  448. Kristina Lund, Steven Schlicker and Patrick Sigmon, Fibonacci sequences and the space of compact sets, Involve, 1:2 (2008), pp. 159-165.
  449. S. Lundin, Young-Tablåer och mönsterundvikande, Masters thesis.
  450. P. H. Lundow, Enumeration of matchings in polygraphs, 1998.
  451. W. F. Lunnon, Bounds on low-deficiency number-wall depth of sequences, Preprint Mar 24 2018 (will soon appear on arXiv)
  452. G. A. Lunter, Bifurcations in Hamiltonian systems [Online Resource : computing singularities by Gröbner bases], 1999 (see stellingen).
  453. Qing-bin Luo, Jin-zhao Wu, Chen Lin, Computing the Number of the Equivalence Classes for Reversible Logic Functions, Int'l J. of Theor. Phys. (2020) Vol. 59, 2384–2396. doi:10.1007/s10773-020-04508-y (A000654, A001038, A001537)
  454. Qui-Ming Luo, Fourier expansions and integral representations for Genocchi Polynomials, JIS 12 (2009) 09.1.4.
  455. Yuewen Luo, Counting Permutations in S2n and S2n+1, arXiv:2407.07366 [math.CO], 2024. See p. 11. (A003483)
  456. J.-G. Luque, L. Mignot and F. Nicart, Some Combinatorial Operators in Language Theory, Arxiv preprint arXiv:1205.3371, 2012
  457. J.-G. Luque and J.-Y. Thibon, arXiv:math.CO/0607254, Noncommutative Symmetric Functions Associated with a Code, Lazard Elimination and Witt Vectors, Discrete Math. Theor. Comput. Sci. 9 (2007), no. 2, 59-72.
  458. Peter Luschny, Counting with Partitions
  459. Peter H. N. Luschny, An introduction to the Bernoulli function, arXiv:2009.06743 [math.HO], 2020. (A333303, A335953) Without using Neil Sloane's OEIS this essay could have been written, but it would only have been half as much fun.
  460. Peter Luschny, Stefan Wehmeier, arXiv:0909.1838, The lcm(1,2,...,n) as a product of sine values sampled over the points in Farey sequences.
  461. A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87.
  462. Ana Luzón, Manuel A. Morón, and Luis Felipe Prieto-Martínez, Commutators and commutator subgroups of the Riordan group, (2021). Abstract (A103586)
  463. Enxhell Luzhnica, Mihnea Iancu, Michael Kohlhase, Importing the OEIS library into OMDoc, In: R. Bergmann, S. Görg, G. Müller (Eds.): Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB. Trier, Germany, 7.-9. October 2015, published at http://ceur-ws.org; Available from http://ceur-ws.org/Vol-1458/F13_CRC73_Luzhnica.pdf
  464. Enxhell Luzhnica, Michael Kohlhase, Formula Semantification and Automated Relation Finding in the On-Line Encyclopedia for Integer Sequences, In: Greuel GM., Koch T., Paule P., Sommese A. (eds) Mathematical Software – ICMS 2016. ICMS 2016. Lecture Notes in Computer Science, vol 9725. Springer; doi:10.1007/978-3-319-42432-3_60
  465. Lun Lv, Zhihong Liu, Some Identities Related to Restricted Lattice Paths, 2016 9th International Symposium on Computational Intelligence and Design (ISCID), pp. 338-340. doi:10.1109/ISCID.2016.1084
  466. Lun Lv and Sabrina X. M. Pang, Reduced Decompositions of Matchings, Electronic Journal of Combinatorics 18 (2011), #P107.
  467. Adrian Łydka, On some properties of the function of the number of relatively prime subsets of {1,2,...,n}, arXiv:1910.02418 [math.NT], 2019. (A085945)
  468. N. Lygeros, M. Mizony and P. Zimmermann, New ECM record, Perfection (Journal of the Pi Society), volume 1 number 202/2000.
  469. N. Lygeros, O. Rozier, A new solution to the equation tau(rho) == 0 (mod p), J. Int. Seq. 13 (2010) # 10.7.4.
  470. Benjamin Lyons and McCabe Olsen, Self-Reachable Chip Configurations on Trees, arXiv:2409.00763 [math.CO], 2024. See p. 18. (A049600)
  471. David W. Lyons, Cristina Mullican, Adam Rilatt, and Jack D. Putnam, Werner states from diagrams, arXiv:2302.05572 [quant-ph], 2023. (A027375)
  472. David W. Lyons and Scott N. Walck, Multiparty quantum states stabilized by the diagonal subgroup of the local unitary group (2008); arXiv:0808.2989

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.