login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019497
Number of ternary search trees on n keys.
15
1, 1, 1, 3, 6, 16, 42, 114, 322, 918, 2673, 7875, 23457, 70551, 213846, 652794, 2004864, 6190612, 19207416, 59850384, 187217679, 587689947, 1850692506, 5845013538, 18509607753, 58759391013, 186958014766, 596108115402, 1904387243796, 6095040222192, 19540540075824
OFFSET
0,4
LINKS
J. A. Fill and R. P. Dobrow, The number of m-ary search trees on n keys, Combin. Probab. Comput. 6 (1997), 435-453.
Jean-Marc Luck, Revisiting log-periodic oscillations, arXiv:2403.00432 [cond-mat.stat-mech], 2024. See p. 21.
FORMULA
a(0)=a(1)=1 and for n>=2 a(n)= sum( i+j+k=n-2, a(i)*a(j)*a(k) ) (i, j, k>=0). - Benoit Cloitre, Jun 14 2004
G.f. A(x) satisfies A(x)= 1+ x+ x^2*A(x)^3. - Michael Somos, Mar 29 2007
Given g.f. A(x), then x*A(-x) is series reversion of A025262(n-1). - Michael Somos, Mar 29 2007
a(n) = Sum_{k=0..n-1} C(n-k,k)/(n-k) * C(3*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ (8 + 3*sqrt(3))^(1/4) * 3^(n/2 - 3/8) * (3 + sqrt(9 + 8*sqrt(3)))^(n + 1/2) / (sqrt(Pi) * n^(3/2) * 2^(2*n + 2)). - Vaclav Kotesovec, Jul 31 2021
MAPLE
A:= proc(n) option remember; if n=0 then 1 else convert(series(1+x+x^2*A(n-1)^3, x=0, n+1), polynom) fi end: a:= n-> coeff(A(n), x, n): seq(a(n), n=0..27); # Alois P. Heinz, Aug 22 2008
MATHEMATICA
a[0] = 1; a[n_] := Sum[Binomial[1*(n-k), k]/(n-k)*Binomial[3*k, n-k-1], {k, 0, n-1}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Apr 07 2015, after Paul D. Hanna *)
PROG
(PARI) v=vector(50, j, 1); for(n=3, 50, A=sum(i=1, n, sum(j=1, n, sum(k=1, n, if(i+j+k-n, 0, v[i]*v[j]*v[k])))); v[n]=A); a(n)=v[n+1];
(PARI) {a(n)= local(A); if(n<0, 0, A= 1+O(x); forstep(k= 1, n, 2, A= 1+x+x*x*A^3); polcoeff(A, n))} /* Michael Somos, Mar 29 2007 */
(PARI) {a(n)= if(n<0, 0, (-1)^n* polcoeff( serreverse((1-sqrt(1-4*x+4*x^3+x^2*O(x^n)))/2), n+1))} /* Michael Somos, Mar 29 2007 */
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(1*(n-k), k)/(n-k)*binomial(3*k, n-k-1))) \\ Paul D. Hanna, Jun 16 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
James Fill (jimfill(AT)jhu.edu)
EXTENSIONS
More terms from Olivier Gérard, July 1997
STATUS
approved