The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019500 Number of 6-ary search trees on n keys. 2
 1, 1, 1, 1, 1, 1, 6, 21, 56, 126, 252, 492, 1062, 2667, 7252, 19509, 49824, 121019, 286974, 687384, 1702308, 4357383, 11322408, 29307458, 74897808, 189349041, 477491356, 1211349276, 3103673406, 8017385416, 20780391882, 53812468392, 138999941172, 358502419242 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 REFERENCES J. A. Fill and R. P. Dobrow, The number of m-ary search trees on n keys, Combin. Probab. Comput. 6 (1997), 435-453. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..700 FORMULA a(n) ~ c * d^n / n^(3/2), where d = 2.705312740243..., c = 0.3835479397... . - Vaclav Kotesovec, Sep 06 2014 MAPLE A:= proc(n) option remember; if n=0 then 1 else convert(series(add(x^i, i=0..4)+ x^5*A(n-1)^6, x=0, n+1), polynom) fi end: a:= n-> coeff(A(n), x, n): seq(a(n), n=0..40);  # Alois P. Heinz, Aug 22 2008 MATHEMATICA A[n_] := A[n] = If[n==0, 1, Series[Sum[x^i, {i, 0, 4}] + x^5*A[n-1]^6, {x, 0, n+1}] // Normal]; a[n_] := Coefficient[A[n], x, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *) CROSSREFS Sequence in context: A192080 A290993 A275936 * A100356 A229886 A243740 Adjacent sequences:  A019497 A019498 A019499 * A019501 A019502 A019503 KEYWORD nonn AUTHOR James Fill (jimfill(AT)jhu.edu) EXTENSIONS More terms from Alois P. Heinz, Aug 22 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 17:59 EST 2020. Contains 331051 sequences. (Running on oeis4.)