login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121988 Number of vertices of the n-th multiplihedron. 7
0, 1, 2, 6, 21, 80, 322, 1348, 5814, 25674, 115566, 528528, 2449746, 11485068, 54377288, 259663576, 1249249981, 6049846848, 29469261934, 144293491564, 709806846980, 3506278661820, 17385618278700, 86500622296800, 431718990188850, 2160826237261692 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The number of facets of the n-th multiplihedron is (n*(n-1)/2) + (2^(n-1)) -1, as proved in Forcey, Theorem 2.1, p. 4. Abstract: "We present a simple algorithm for determining the extremal points in Euclidean space whose convex hull is the n^{th} polytope in the sequence known as the multiplihedra. This answers the open question of whether the multiplihedra could be realized as convex polytopes."

G.f. = x*c(x)*c(x*c(x)) where c(x) is the generating function of the Catalan numbers C(n). Thus a(n) is the Catalan transform of the sequence C(n-1). Reference for the definition of Catalan transform is the paper by Paul Barry. - Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007

A129442 is an essentially identical sequence. - R. J. Mathar, Jun 13 2008

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..500

Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5, pp. 1-24.

David Callan, A combinatorial interpretation of the Catalan transform of the Catalan numbers, arXiv:1111.0996, 2011.

Stefan Forcey, Convex Hull Realizations of the Multiplihedra, Theorem 3.2, p. 8.

FORMULA

a(0) = 0; a(n) = C(n-1) + SUM[i=1..(n-1)]a(i)*a(n-i), where C(n) is the Catalan sequence A000108.

G.f.: (1-sqrt(2*sqrt(1-4x)-1))/2. a(n) = (1/n)*Sum_{k=1..n}(binomial(2*n-k-1,n-1)*binomial(2k-2, k-1)); a(0)=0. - Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007

a(n) = Sum_{k, 0<=k<=n} A106566(n,k)*A000108(k-1) with A000108(-1)=0. - Philippe Deléham, Aug 27 2007

Recurrence: 3*(n-1)*n*a(n) = 14*(n-1)*(2*n-3)*a(n-1) - 4*(4*n-9)*(4*n-7)*a(n-2). - Vaclav Kotesovec, Oct 19 2012

a(n) ~ 2^(4*n-5/2)/(sqrt(Pi)*3^(n-1/2)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012

G.f.: A(x) satisfies A(x)=x*(1+A(x))/((1-A(x))*(1+A(x)^3). - Vladimir Kruchinin, Jun 01 2014.

G.f. is series reversion of (x - x^2) * (1 - x + x^2) = x - 2*x^2 + 2*x^3 - x^4. - Michael Somos, Jun 01 2014

EXAMPLE

G.f. = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 + 1348*x^7 + 5814*x^8 + ...

MAPLE

a:= proc(n) option remember; `if`(n<3, n, (14*(n-1)*(2*n-3)*a(n-1)

      -4*(4*n-9)*(4*n-7)*a(n-2))/ (3*n*(n-1)))

    end:

seq (a(n), n=0..30);  # Alois P. Heinz, Oct 20 2012

MATHEMATICA

a[0] = 0; a[n_] := a[n] = (2 n - 2)!/((n - 1)! n!) + Sum[ a[i]*a[n - i], {i, n - 1}]; Table[ a@n, {n, 0, 24}] (* Robert G. Wilson v *)

8[ n_] := If[ n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[ x - 2 x^2 + 2 x^3 - x^4, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Jun 01 2014 *)

PROG

(PARI) {a(n) = if( n<1, 0, polcoeff( serreverse( x - 2*x^2 + 2*x^3 - x^4 + x * O(x^n)), n))}; /* Michael Somos, Jun 01 2014 */

CROSSREFS

Cf. A000108.

Cf. A129442, A007317.

Cf. 164965.

Sequence in context: A106228 A150204 A129442 * A150205 A150206 A150207

Adjacent sequences:  A121985 A121986 A121987 * A121989 A121990 A121991

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, Jun 24 2007

EXTENSIONS

More terms from Robert G. Wilson v, Jun 28 2007

Replaced arXiv URL by non-cached version - R. J. Mathar, Oct 23 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 09:09 EST 2014. Contains 250301 sequences.