OFFSET
0,4
COMMENTS
LINKS
P. Barry, Comparing two matrices of generalized moments defined by continued fraction expansions, arXiv preprint arXiv:1311.7161 [math.CO], 2013 and J. Int. Seq. 17 (2014) # 14.5.1.
Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 12.
E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices and Riordan arrays, arXiv:math/0702638 [math.CO], 2007.
Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017): 3081-3091.
FORMULA
T(0, 0) = 1, T(n, k) = 0 if k>n, T(n, 0) = T(n-1, 0) + 2*T(n-1, 1), T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k+1) for k>0.
Sum_{0<=k<=n} T(n, k) = A109980(n).
Sum_{k>=0} T(m, k)*T(n, k)*2^k = T(m+n, 0) = A001003(m+n).
T(n, k) = Sum_{j=0..n-k} (binomial(n-1, j)*binomial(n+1, k+j+1) - binomial(n, j)*binomial(n, k+j+1))*2^j. (Cigler) - Peter Luschny, Jan 24 2025
EXAMPLE
Triangle begins:
1
1, 1
3, 4, 1
11, 17, 7, 1
45, 76, 40, 10, 1
197, 353, 216, 72, 13, 1
903, 1688, 1345, 458, 113, 16, 1
4279, 8257, 6039, 2745, 829, 163, 19, 1
20793, 41128, 31864, 15932, 5558, 1356, 222, 22, 1
103049, 207905, 168584, 90776, 35318, 10070, 2066, 290, 25, 1
.
Production matrix begins:
1, 1
2, 3, 1
0, 2, 3, 1
0, 0, 2, 3, 1
0, 0, 0, 2, 3, 1
0, 0, 0, 0, 2, 3, 1
0, 0, 0, 0, 0, 2, 3, 1
0, 0, 0, 0, 0, 0, 2, 3, 1
... - Philippe Deléham, Sep 24 2014
MAPLE
T := (n, k) -> local j; add((binomial(n-1, j)*binomial(n+1, k+j+1) - binomial(n, j)*binomial(n, k+j+1))*2^j, j = 0..n-k):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Jan 24 2025
MATHEMATICA
DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x r[[k+1]] + y s[[k+1]]; p[0, _] = 1; p[_, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k] p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n-k)*y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
nmax = 9;
DELTA[Table[{1, 2}, (nmax+1)/2] // Flatten, Prepend[Table[0, {nmax}], 1], nmax] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
(* Function RiordanSquare defined in A321620. *)
RiordanSquare[(1 + x - Sqrt[1 - 6x + x^2])/(4x), 11] // Flatten (* Peter Luschny, Nov 27 2018 *)
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Jan 25 2010
EXTENSIONS
New name by Peter Luschny, Nov 27 2018
STATUS
approved