login
A114608
Triangle read by rows: T(n,k) is the number of bicolored Dyck paths of semilength n and having k peaks of the form ud (0 <= k <= n). A bicolored Dyck path is a Dyck path in which each up-step is of two kinds: u and U.
1
1, 1, 1, 3, 4, 1, 11, 19, 9, 1, 45, 96, 66, 16, 1, 197, 501, 450, 170, 25, 1, 903, 2668, 2955, 1520, 365, 36, 1, 4279, 14407, 18963, 12355, 4165, 693, 49, 1, 20793, 78592, 119812, 94528, 41230, 9856, 1204, 64, 1, 103049, 432073, 748548, 693588, 372078, 117054
OFFSET
0,4
COMMENTS
Row sums yield A052701. Column 0 yields the little Schroeder numbers (A001003). Sum_{k=0..n} k*T(n,k) = A069720(n).
Triangle T(n,k), 0 <= k <= n, read by rows; given by [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 23 2005
FORMULA
T(n,k) = (1/n)*binomial(n,k)*Sum_{j=0..n-k} 2^j*binomial(n, j+1)*binomial(n-k, j) (k <= n-1); T(n, n)=1.
G.f. = G = G(t, z) satisfies G = 1 + z*(G-1+t)*G + z*G^2.
EXAMPLE
T(3,2)=9 because we have (ud)(ud)Ud, (ud)Ud(ud), Ud(ud)(ud), (ud)u(ud)d,
(ud)U(ud)d, u(ud)d(ud), U(ud)d(ud), u(ud)(ud)d and U(ud)(ud)d (the ud peaks are shown between parentheses).
Triangle starts:
1;
1, 1;
3, 4, 1;
11, 19, 9, 1;
45, 96, 66, 16, 1;
MAPLE
T:=proc(n, k) if k<=n-1 then (1/n)*binomial(n, k)*sum(2^j*binomial(n, j+1)*binomial(n-k, j), j=0..n-k) elif k=n then 1 else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := If[k <= n-1, (1/n)*Binomial[n, k]*Sum[2^j*Binomial[n, j+1]* Binomial[n-k, j], {j, 0, n-k}], If[k == n, 1, 0]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 11 2018, from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Dec 15 2005
STATUS
approved