OFFSET
0,1
COMMENTS
This is also the decimal expansion of 2*sin(Pi/14).
rho_2 := 2*cos(3*Pi/7) and rho(7) := 2*cos(Pi/7) (see A160389) are the two positive zeros of the minimal polynomial C(7, x) = x^3 - x^2 - 2*x + 1 of the algebraic number rho(7), the length ratio of the smaller diagonal and the side in the regular 7-gon (heptagon). See A187360 and a link to the arXiv paper given there, eq. (20) for the zeros of C(n, x). The other zero is negative, rho_3 := 2*cos(5*Pi/n). See -A255249.
Also the edge length of a regular 14-gon with unit circumradius. Such an m-gon is not constructible using a compass and a straightedge (see A004169). With an even m, in fact, it would be constructible only if the (m/2)-gon were constructible, which is not true in this case (see A272487). - Stanislav Sykora, May 01 2016
LINKS
Stanislav Sykora, Table of n, a(n) for n = 0..2000
Wikipedia, Constructible number
Wikipedia, Regular polygon
FORMULA
See A232736 for the decimal expansion of cos(3*Pi/7) = sin(Pi/14).
Equals i^(6/7) - i^(8/7). - Peter Luschny, Apr 04 2020
From Peter Bala, Oct 11 2021: (Start)
Equals 2 - (1 - z^3)*(1 - z^4)/((1 - z^2)*(1 - z^5)), where z = exp(2*Pi*i/7).
Equals 1 - A255240. (End)
EXAMPLE
0.445041867912628808577805128993589518932711137529089910623974031...
MATHEMATICA
RealDigits[N[2Cos[3Pi/7], 100]][[1]] (* Robert Price, May 01 2016 *)
PROG
(PARI) 2*sin(Pi/14)
(PARI) polrootsreal(x^3 - x^2 - 2*x + 1)[2] \\ Charles R Greathouse IV, Oct 30 2023
(Magma) R:= RealField(120); 2*Cos(3*Pi(R)/7); // G. C. Greubel, Sep 04 2022
(SageMath) numerical_approx(2*cos(3*pi/7), digits=120) # G. C. Greubel, Sep 04 2022
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Wolfdieter Lang, Mar 13 2015
EXTENSIONS
Offset corrected by Stanislav Sykora, May 01 2016
STATUS
approved