login
A159892
Decimal expansion of (450483+287918*sqrt(2))/439^2.
4
4, 4, 5, 0, 2, 7, 0, 2, 8, 9, 4, 4, 0, 8, 8, 4, 9, 0, 7, 5, 1, 3, 3, 7, 2, 2, 5, 3, 6, 5, 6, 8, 8, 1, 4, 5, 7, 5, 7, 6, 6, 1, 4, 8, 3, 1, 8, 8, 0, 1, 7, 9, 8, 2, 1, 2, 5, 9, 1, 4, 2, 8, 8, 9, 4, 7, 6, 5, 7, 8, 6, 4, 8, 5, 8, 4, 4, 9, 7, 4, 5, 7, 0, 0, 6, 3, 7, 6, 4, 6, 1, 8, 7, 2, 5, 8, 2, 1, 5, 9, 3, 8, 4, 3, 9
OFFSET
1,1
COMMENTS
lim_{n -> infinity} b(n)/b(n-1) = (450483+287918*sqrt(2))/439^2 for n mod 3 = 0, b = A130645.
lim_{n -> infinity} b(n)/b(n-1) = (450483+287918*sqrt(2))/439^2 for n mod 3 = 1, b = A159890.
LINKS
FORMULA
Equals (802 +359*sqrt(2))/(802 -359*sqrt(2)).
Equals (3 +2*sqrt(2))*(21 -sqrt(2))^2/(21 +sqrt(2))^2.
EXAMPLE
(450483+287918*sqrt(2))/439^2 = 4.45027028944088490751...
MATHEMATICA
RealDigits[N[(450483+287918*Sqrt[2])/439^2, 300]][[1]] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
PROG
(PARI) (450483+287918*sqrt(2))/439^2 \\ G. C. Greubel, May 17 2018
(Magma) (450483 +287918*Sqrt(2))/439^2; // G. C. Greubel, May 17 2018
CROSSREFS
Cf. A130645, A159890, A002193 (decimal expansion of sqrt(2)), A159891 (decimal expansion of (443+42*sqrt(2))/439).
Sequence in context: A239351 A111481 A111763 * A255241 A200694 A021696
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, Apr 30 2009
STATUS
approved