OFFSET
0,2
COMMENTS
All numbers of the form n*4^n+(4^n-1)/3 have the property that they are sums of two squares and also their indices are the sum of two squares. This follows from the identity n*4^n+(4^n-1)/3=4*(4*(..4*(4*n+1)+1)+1)+1..)+1. - Artur Jasinski, Nov 12 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Index entries for linear recurrences with constant coefficients, signature (8,-16).
FORMULA
G.f.: 4*x/(1-4*x)^2.
E.g.f.: 4*x*exp(4*x).
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = log(4/3) = A083679.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5/4). (End)
MATHEMATICA
Table[n 4^n, {n, 0, 20}] (* or *) LinearRecurrence[{8, -16}, {0, 4}, 30] (* Harvey P. Dale, Apr 22 2018 *)
PROG
(Magma) [n*4^n: n in [0..25]]; // Vincenzo Librandi, Jun 01 2011
(PARI) a(n) = n<<(2*n) \\ David A. Corneth, Apr 22 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Peter Winkler (pw(AT)bell-labs.com)
STATUS
approved