login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A018212 Alkane (or paraffin) numbers l(11,n). 1
1, 5, 25, 85, 255, 651, 1519, 3235, 6470, 12190, 21942, 37854, 63090, 101850, 160050, 245322, 367983, 541035, 781495, 1110395, 1554553, 2146573, 2927145, 3945045, 5260060, 6942988, 9079292, 11769100, 15131700, 19305540 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.

Winston C. Yang (paper in preparation).

LINKS

Table of n, a(n) for n=0..29.

N. J. A. Sloane, Classic Sequences

FORMULA

G.f.: (1+6*x^2+x^4)/((1-x)^5*(1-x^2)^4) [ N. J. A. Sloane ]

l(c, r) = 1/2 binomial(c+r-3, r) + 1/2 d(c, r), where d(c, r) is binomial((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, binomial((c + r - 4)/2, r/2) if c is even and r is even, binomial((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.

a(n) = (1/(2*8!))*(n+2)*(n+4)*(n+6)*(n+8)*((n+1)*(n+3)*(n+5)*(n+7) + 1*3*5*7) - (1/3)*(1/2^6)*(n^3+(27/2)*n^2+56*n+(279/4))*(1/2)*(1-(-1)^n) [Yosu Yurramendi Jun 23 2013]

CROSSREFS

Sequence in context: A147122 A051229 A058919 * A181477 A147274 A147034

Adjacent sequences:  A018209 A018210 A018211 * A018213 A018214 A018215

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 15:16 EDT 2015. Contains 261125 sequences.