login
A055793
Numbers n such that n and floor[n/3] are both squares; i.e., squares which remain squares when written in base 3 and last digit is removed.
28
0, 1, 4, 49, 676, 9409, 131044, 1825201, 25421764, 354079489, 4931691076, 68689595569, 956722646884, 13325427460801, 185599261804324, 2585064237799729, 36005300067391876, 501489136705686529, 6984842613812219524, 97286307456665386801
OFFSET
1,3
COMMENTS
Or, squares of the form 3n^2+1.
See A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases.
LINKS
Tom C. Brown and Peter J Shiue, Squares of second-order linear recurrence sequences, Fib. Quart., 33 (1994), 352-356.
M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
FORMULA
a(n) = 3*A098301(n-2)+1. - R. J. Mathar, Jun 11 2009
a(n) = 14*a(n-1)-a(n-2)-6, with a(0)=1, a(1)=4. (See Brown and Shiue)
a(n) = (A001075(n-2))^2. - Johannes Boot Dec 16 2011, corrected by M. F. Hasler, Jan 15 2012
G.f.: x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)). - M. F. Hasler, Jan 15 2012
EXAMPLE
a(3) = 49 because 49 = 7^2 = 1211 base 3 and 121 base 3 = 16 = 4^2.
MAPLE
A055793 := proc(n) coeftayl(x*(1-11*x+4*x^2)/((1-x)*(1-14*x+x^2)), x=0, n); end proc: seq(A055793(n), n=0..20); # Wesley Ivan Hurt, Sep 28 2014
MATHEMATICA
CoefficientList[Series[x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 28 2014 *)
LinearRecurrence[{15, -15, 1}, {0, 1, 4, 49}, 40] (* Harvey P. Dale, Jun 19 2021 *)
PROG
(PARI) sq3nsqplus1(n) = { for(x=1, n, y = 3*x*x+1; \ print1(y" ") if(issquare(y), print1(y" ")) ) }
(Magma) I:=[0, 1, 4]; [n le 3 select I[n] else 14*Self(n-1) - Self(n-2) - 6: n in [1..30]]; // Vincenzo Librandi, Jan 27 2013
CROSSREFS
Cf. also A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases.
Sequence in context: A199028 A189146 A086094 * A202829 A204233 A144656
KEYWORD
base,nonn,easy
AUTHOR
Henry Bottomley, Jul 14 2000
EXTENSIONS
More terms from Cino Hilliard, Mar 01 2003
STATUS
approved