OFFSET
1,3
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..800
Tom C. Brown and Peter J Shiue, Squares of second-order linear recurrence sequences, Fib. Quart., 33 (1994), 352-356.
M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
FORMULA
a(n) = 3*A098301(n-2)+1. - R. J. Mathar, Jun 11 2009
a(n) = 14*a(n-1)-a(n-2)-6, with a(0)=1, a(1)=4. (See Brown and Shiue)
G.f.: x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)). - M. F. Hasler, Jan 15 2012
EXAMPLE
a(3) = 49 because 49 = 7^2 = 1211 base 3 and 121 base 3 = 16 = 4^2.
MAPLE
A055793 := proc(n) coeftayl(x*(1-11*x+4*x^2)/((1-x)*(1-14*x+x^2)), x=0, n); end proc: seq(A055793(n), n=0..20); # Wesley Ivan Hurt, Sep 28 2014
MATHEMATICA
CoefficientList[Series[x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 28 2014 *)
LinearRecurrence[{15, -15, 1}, {0, 1, 4, 49}, 40] (* Harvey P. Dale, Jun 19 2021 *)
PROG
(PARI) sq3nsqplus1(n) = { for(x=1, n, y = 3*x*x+1; \ print1(y" ") if(issquare(y), print1(y" ")) ) }
(Magma) I:=[0, 1, 4]; [n le 3 select I[n] else 14*Self(n-1) - Self(n-2) - 6: n in [1..30]]; // Vincenzo Librandi, Jan 27 2013
CROSSREFS
KEYWORD
base,nonn,easy
AUTHOR
Henry Bottomley, Jul 14 2000
EXTENSIONS
More terms from Cino Hilliard, Mar 01 2003
STATUS
approved