The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055793 Numbers n such that n and floor[n/3] are both squares; i.e., squares which remain squares when written in base 3 and last digit is removed. 28
 0, 1, 4, 49, 676, 9409, 131044, 1825201, 25421764, 354079489, 4931691076, 68689595569, 956722646884, 13325427460801, 185599261804324, 2585064237799729, 36005300067391876, 501489136705686529, 6984842613812219524, 97286307456665386801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Or, squares of the form 3n^2+1. See A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..800 Tom C. Brown and Peter J Shiue, Squares of second-order linear recurrence sequences, Fib. Quart., 33 (1994), 352-356. M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012 Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55. Index entries for linear recurrences with constant coefficients, signature (15,-15,1). FORMULA a(n) = 3*A098301(n-2)+1. - R. J. Mathar, Jun 11 2009 a(n) = 14*a(n-1)-a(n-2)-6, with a(0)=1, a(1)=4. (See Brown and Shiue) a(n) = (A001075(n-2))^2. - Johannes Boot Dec 16 2011, corrected by M. F. Hasler, Jan 15 2012 G.f.: x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)). - M. F. Hasler, Jan 15 2012 EXAMPLE a(3) = 49 because 49 = 7^2 = 1211 base 3 and 121 base 3 = 16 = 4^2. MAPLE A055793 := proc(n) coeftayl(x*(1-11*x+4*x^2)/((1-x)*(1-14*x+x^2)), x=0, n); end proc: seq(A055793(n), n=0..20); # Wesley Ivan Hurt, Sep 28 2014 MATHEMATICA CoefficientList[Series[x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 28 2014 *) PROG (PARI) sq3nsqplus1(n) = { for(x=1, n, y = 3*x*x+1; \ print1(y" ") if(issquare(y), print1(y" ")) ) } (MAGMA) I:=[0, 1, 4]; [n le 3 select I[n] else 14*Self(n-1) - Self(n-2) - 6: n in [1..30]]; // Vincenzo Librandi, Jan 27 2013 CROSSREFS Cf. A001075, A023110, A098301. Cf. also A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases. Sequence in context: A199028 A189146 A086094 * A202829 A204233 A144656 Adjacent sequences:  A055790 A055791 A055792 * A055794 A055795 A055796 KEYWORD base,nonn,easy AUTHOR Henry Bottomley, Jul 14 2000 EXTENSIONS More terms from Cino Hilliard, Mar 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 19:11 EDT 2021. Contains 343177 sequences. (Running on oeis4.)