This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055794 Array T read by rows: T(i,0)=1 for i >= 0; T(i,i)=0 for i=0,1,2,3; T(i,i)=0 for i >= 4; T(i,j)=T(i-1,j)+T(i-2,j-1) for 1<=j<=i-1. 5
 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 0, 1, 5, 7, 4, 1, 0, 1, 6, 11, 8, 3, 0, 0, 1, 7, 16, 15, 7, 1, 0, 0, 1, 8, 22, 26, 15, 4, 0, 0, 0, 1, 9, 29, 42, 30, 11, 1, 0, 0, 0, 1, 10, 37, 64, 56, 26, 5, 0, 0, 0, 0, 1, 11, 46, 93, 98, 56, 16, 1, 0, 0, 0, 0, 1, 12 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS T(i+j,j)=number of strings (s(1),...,s(i+1)) of nonnegative integers s(k) such that 0<=s(k)-s(k-1)<=1 for k=2,3,...,i+1 and s(i+1)=j. T(i+j,j)=number of compositions of j consisting of i parts, all of in {0,1}. LINKS C. Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 1B. EXAMPLE Triangle begins:   1;   1,1;   1,2,1;   1,3,2,1;   1,4,4,2,0;   ... T(7,4) counts the strings 3334, 3344, 3444, 2234, 2334, 2344, 1234. T(7,4) counts the compositions 001, 010, 100, 011, 101, 110, 111. CROSSREFS Row sums: A000032 (Lucas numbers, 1, 2, 4, 7, 11, 18, ...). T(2n, n)=A000125(n) (Cake numbers, 1, 2, 4, 8, 15, 26, ...). T(2n+2, n)=A027660(n). Sequence in context: A278427 A077592 A194005 * A092905 A052509 A172119 Adjacent sequences:  A055791 A055792 A055793 * A055795 A055796 A055797 KEYWORD nonn,tabl AUTHOR Clark Kimberling, May 28 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 16:17 EDT 2019. Contains 328223 sequences. (Running on oeis4.)