This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003483 Number of square permutations of n elements. (Formerly M2931) 19
 1, 1, 1, 3, 12, 60, 270, 1890, 14280, 128520, 1096200, 12058200, 139043520, 1807565760, 22642139520, 339632092800, 5237183952000, 89032127184000, 1475427973219200, 28033131491164800, 543494606861606400, 11413386744093734400, 235075995738558374400, 5406747901986842611200, 126214560713084056012800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Number of permutations p in S_n such that there exists q in S_n with q^2=p. "A permutation P has a square root if and only if the numbers of cycles of P that have each even length are even numbers." [Theorem 4.8.1. on p.147 from the Wilf reference]. - Joerg Arndt, Sep 08 2014 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.11. H. S. Wilf, Generatingfunctionology, 3rd ed., A K Peters Ltd., Wellesley, MA, 2006, p. 157. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..250 (first 101 terms from N. J. A. Sloane) Edward A. Bender, Asymptotic methods in enumeration, SIAM Review 16 (1974), no. 4, p. 509. Joseph Blum, Letters to N. J. A. Sloane, 1974 J. Blum, Enumeration of the square permutations in S_n, J. Combin. Theory, A 17 (1974), 156-161. Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 36. P. Flajolet et al., A hybrid of Darboux's method and singularity analysis in combinatorial asymptotics, arXiv:math.CO/0606370, p. 18, Proposition 2. M. R. Pournaki, On the number of even permutations with roots, The Australasian Journal of Combinatorics, Volume 45, 2009, pp. 37-42. N. Pouyanne, On the number of permutations admitting an m-th root, Electron. J. Combin., 9 (2002), #R3. Bob Smith and N. J. A. Sloane, Correspondence, 1979 H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 148, Eq. 4.8.1. FORMULA E.g.f.: sqrt((1 + x)/(1 - x)) * Product_{k>=1} cosh( x^(2*k)/(2*k) ). [Blum, corrected]. a(2*n+1) = (2*n + 1)*a(2*n). Asymptotics: a(n) ~ n! * sqrt(2/(n*Pi)) * e^G, where e^G = Product_{k>=1} cosh(1/(2k)) ~ 1.22177951519253683396485298445636121278881... (see A246945). - corrected by Vaclav Kotesovec, Sep 13 2014 G = Sum_{j>=1} (-1)^(j + 1) * Zeta(2*j)^2 * (1 - 1/2^(2*j)) / (j * Pi^(2*j)). - Vaclav Kotesovec, Sep 20 2014 EXAMPLE a(3) = 3: permutations with square roots are identity and two 3-cycles. MAPLE with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,       add(`if`(irem(i, 2)=0 and irem(j, 2)=1, 0, (i-1)!^j*       multinomial(n, n-i*j, i\$j)/j!*b(n-i*j, i-1)), j=0..n/i)))     end: a:= n-> b(n\$2): seq(a(n), n=0..30);  # Alois P. Heinz, Sep 08 2014 MATHEMATICA max = 20; f[x_] := Sqrt[(1 + x)/(1 - x)]*  Product[ Cosh[x^(2*k)/(2*k)], {k, 1, max}]; se = Series[ f[x], {x, 0, max}]; CoefficientList[ se, x]*Range[0, max]! (* Jean-François Alcover, Oct 05 2011, after g.f. *) multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[Mod[i, 2] == 0 && Mod[j, 2] == 1, 0, (i-1)!^j* multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *) a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Sqrt[ (1 + x) / (1 - x)] Product[ Cosh[ x^k / k], {k, 2, n, 2}], {x, 0, n}]]; (* Michael Somos, Jul 11 2018 *) PROG (PARI) N=66; x='x+O('x^66); Vec(serlaplace( sqrt((1+x)/(1-x))*prod(k=1, N, cosh(x^(2*k)/(2*k))))) \\ Joerg Arndt, Sep 08 2014 CROSSREFS Cf. A103619 (cube root), A103620 (fourth root), A215716 (fifth root), A215717 (sixth root), A215718 (seventh root). Column k=2 of A247005. Cf. A246945, A247621. Sequence in context: A069944 A253171 A073996 * A278395 A128602 A092803 Adjacent sequences:  A003480 A003481 A003482 * A003484 A003485 A003486 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from Vladeta Jovovic, Mar 28 2001 Additional comments from Michael Somos, Jun 27, 2002 Minor edits by Vaclav Kotesovec, Sep 16 2014 and Sep 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 04:33 EST 2018. Contains 318141 sequences. (Running on oeis4.)