This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003481 a(n) = 7*a(n-1) - a(n-2) + 5. (Formerly M2120) 4
 2, 20, 143, 986, 6764, 46367, 317810, 2178308, 14930351, 102334154, 701408732, 4807526975, 32951280098, 225851433716, 1548008755919, 10610209857722, 72723460248140, 498454011879263, 3416454622906706, 23416728348467684, 160500643816367087, 1100087778366101930 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Conjecture: satisfies a linear recurrence having signature (8, -8, 1). - Harvey P. Dale, Aug 11 2019 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..200 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. John Riordan and N. J. A. Sloane, Correspondence, 1974 S. M. Tanny and M. Zuker, On a unimodal sequence of binomial coefficients, Discrete Math. 9 (1974), 79-89. FORMULA a(n) = Fibonacci(4(n+1))-1 = A033888(n+1)-1. - Ralf Stephan, Feb 24 2004, index corrected R. J. Mathar, Sep 18 2008 MAPLE A003481:=(-2-4*z+z**2)/(z-1)/(z**2-7*z+1); # [Simon Plouffe in his 1992 dissertation.] MATHEMATICA t = {2, 20}; Do[AppendTo[t, 7*t[[-1]] - t[[-2]] + 5], {n, 2, 30}] (* T. D. Noe, Oct 07 2013 *) nxt[{a_, b_}]:={b, 7b-a+5}; NestList[nxt, {2, 20}, 30][[All, 1]] (* Harvey P. Dale, Aug 11 2019 *) CROSSREFS Cf. A033888. Sequence in context: A229454 A003490 A081006 * A000183 A198052 A203216 Adjacent sequences:  A003478 A003479 A003480 * A003482 A003483 A003484 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Ralf Stephan, Feb 24 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 04:25 EDT 2019. Contains 328315 sequences. (Running on oeis4.)