This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003482 a(n) = 7*a(n-1) - a(n-2) + 4, with a(0) = 0, a(1) = 5. (Formerly M3988) 9
 0, 5, 39, 272, 1869, 12815, 87840, 602069, 4126647, 28284464, 193864605, 1328767775, 9107509824, 62423800997, 427859097159, 2932589879120, 20100270056685, 137769300517679, 944284833567072, 6472224534451829, 44361286907595735, 304056783818718320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The values (a(n),x(n)), n >= 2, x(n)=Fibonacci(2*n+2)*Fibonacci(2*n+3)=A081018(n+1), are the integer solutions (a,x) of the equation binomial(x+1,a+1) + binomial(x+2,a+1) = binomial(x+3,a+1). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de) The values (a(n),x(n)), n >= 2 are also the integer solutions (a, x) of the equation x(a+1) = (x-a)(x-a-1) or, equivalently, binomial(x, a) = binomial(x-1, a+1). - Tomohiro Yamada, May 30 2018 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 H. Harborth, Fermat-like binomial equations, Applications of Fibonacci numbers, Proc. 2nd Int. Conf., San Jose, California, August 1986, 1-5 (1988). D. A. Lind, The quadratic field Q(sqrt(5)) and a certain diophantine equation, Fibonacci Quart. 6(3) (1968), 86-93. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. John Riordan and N. J. A. Sloane, Correspondence, 1974 David Singmaster, Repeated binomial coefficients and Fibonacci numbers, Fibonacci Quart. 13 (1973), 295-298. S. M. Tanny and M. Zuker, On a unimodal sequence of binomial coefficients, Discrete Math. 9 (1974), 79-89. Index entries for linear recurrences with constant coefficients, signature (8,-8,1). FORMULA a(n) = Fibonacci(2*n) * Fibonacci(2*n+3). a(n) = Fibonacci(2*n+2)^2 - Fibonacci(2*n+1)^2. - Gary Detlefs, Oct 12 2011 a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3). - Vladimir Joseph Stephan Orlovsky and Vincenzo Librandi, Jan 22 2012 a(n) = -4/5 + (sqrt(5)/5 + 2/5)*(7/2 + 3*sqrt(5)/2)^n - (sqrt(5)/5 - 2/5)*(7/2 - 3*sqrt(5)/2)^n. - Antonio Alberto Olivares, May 29 2013 a(n) = -A206351(-n) for all n in Z. - Michael Somos, Jun 26 2018 EXAMPLE G.f. = 5*x + 39*x^2 + 272*x^3 + 1869*x^4 + 12815*x^5 + 87840*x^6 + ... - Michael Somos, Jun 26 2018 MAPLE A003482:=z*(-5+z)/(z-1)/(z**2-7*z+1); # conjectured by Simon Plouffe in his 1992 dissertation MATHEMATICA LinearRecurrence[{8, -8, 1}, {0, 5, 39}, 30] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *) PROG (PARI) a(n)=fibonacci(2*n)*fibonacci(2*n+3) \\ Charles R Greathouse IV, May 29 2013 CROSSREFS Cf. A001109, A081018, A206351. Sequence in context: A075135 A202391 A053573 * A221357 A201442 A135849 Adjacent sequences:  A003479 A003480 A003481 * A003483 A003484 A003485 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 22:47 EDT 2019. Contains 328315 sequences. (Running on oeis4.)