login
A289679
a(n) = Catalan(n-1)*Bell(n).
4
1, 2, 10, 75, 728, 8526, 115764, 1776060, 30240210, 563870450, 11397261720, 247700513242, 5750374629244, 141819106313800, 3698639651089800, 101603353693132215, 2929908721122796680, 88427704298354261610, 2785943404258558905900, 91410200883108291556680, 3117102657076175159955420
OFFSET
1,2
LINKS
Pierre Lescanne, Zaionc paradox revisited, arXiv:2104.06723 [cs.LO], 2021.
Paul Tarau and Valeria de Paiva, Deriving Theorems in Implicational Linear Logic, Declaratively, (2020).
MATHEMATICA
Array[CatalanNumber[# - 1] BellB[#] &, 21] (* Michael De Vlieger, Aug 04 2017 *)
PROG
(Python)
from sympy.functions.combinatorial.numbers import bell, catalan
def A289679(n): return catalan(n-1)*bell(n) # Chai Wah Wu, Oct 15 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 04 2017
STATUS
approved