login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094071 Coefficients arising in combinatorial field theory. 0
1, 2, 10, 75, 572, 6293, 92962, 1395180, 25482135, 582310475, 13697614020, 364311810217, 11551145067139, 380339218683310, 13636394439014770, 563142483841155427, 24264229405883569164, 1114389674994185476663 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).

P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G E. H. Duchamp, Combinatorial field theories via boson normal ordering, preprint, Apr 27 2004.

LINKS

Table of n, a(n) for n=0..17.

P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering

A. Horzela, P. Blasiak, G. E. H. Duchamp, K. A. Penson and A. I. Solomon, A product formula and combinatorial field theory

FORMULA

a(n)=(n+1)!*B(n+1)*[x^(n+1)](exp(x+x^3/3!)), where B(n) are the Bell numbers (A000110) - Emeric Deutsch, Nov 23 2004

MAPLE

with(combinat):F:=series(exp(x+x^3/3!), x=0, 25): seq((n+1)!*coeff(F, x^(n+1))*bell(n+1), n=0..20);

MATHEMATICA

a[n_] := (n+1)! BellB[n+1] SeriesCoefficient[Exp[x+x^3/3!], {x, 0, n+1}];

Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Nov 11 2018 *)

CROSSREFS

Cf. A000085, A005425, A094065-.

Cf. A000110.

Sequence in context: A005365 A191812 A059104 * A289679 A136222 A184356

Adjacent sequences:  A094068 A094069 A094070 * A094072 A094073 A094074

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, May 01 2004

EXTENSIONS

More terms from Emeric Deutsch, Nov 23 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 20:07 EST 2019. Contains 329204 sequences. (Running on oeis4.)