The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A234466 7*binomial(8*n+7,n)/(8*n+7). 12
 1, 7, 77, 1015, 14763, 228459, 3689595, 61474519, 1048927880, 18236463245, 321899509386, 5753527081211, 103922382296180, 1893943017506925, 34783258504651434, 643111366544129175, 11960812088346090200, 223614812152492437432, 4200107505573406222425 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=8, r=7. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669. Thomas A. Dowling, Catalan Numbers Chapter 7. ElÅ¼bieta Liszewska, Wojciech MÅ‚otkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019. Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955. FORMULA G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=8, r=7. E.g.f.: hypergeom([7, 9, 10, 11, 12, 13, 14]/8, [8, 9, 10, 11, 12, 13, 14]/7, (8^8/7^7)*x),10). Cf.: Ilya Gutkovskiy in A118971. - Wolfdieter Lang, Feb 06 2020 D-finite with recurrence: +7*(7*n+4)*(7*n+1)*(7*n+5)*(7*n+2)*(7*n+6)*(7*n+3)*(n+1)*a(n) -128*(8*n+3)*(4*n+3)*(8*n+1)*(2*n+1)*(8*n-1)*(4*n+1)*(8*n+5)*a(n-1)=0. - R. J. Mathar, Feb 21 2020 MATHEMATICA Table[7 Binomial[8 n + 7, n]/(8 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *) PROG (PARI) a(n) = 7*binomial(8*n+7, n)/(8*n+7); (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(8/7))^7+x*O(x^n)); polcoeff(B, n)} (MAGMA) [7*Binomial(8*n+7, n)/(8*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013 CROSSREFS Cf. A000108, A007556, A118971, A234461, A234462, A234463, A234464, A234465, A234467, A230390. Sequence in context: A261799 A246236 A267709 * A306031 A249933 A107866 Adjacent sequences:  A234463 A234464 A234465 * A234467 A234468 A234469 KEYWORD nonn,easy AUTHOR Tim Fulford, Dec 26 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 23:45 EDT 2020. Contains 336434 sequences. (Running on oeis4.)