This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036289 a(n) = n*2^n. 87
 0, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768, 15569256448, 32212254720 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Right side of the binomial sum Sum_{i = 0..n} (n-2*i)^2 * binomial(n, i) = n*2^n. - Yong Kong (ykong(AT)curagen.com), Dec 28 2000 Let W be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all elements x, y of P(A), xRy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y, or y is a proper subset of x and there are no z in P(A) such that y is a proper subset of z and z is a proper subset of x. Then a(n) = |W|. - Ross La Haye, Sep 26 2007 Partial sums give A036799. - Vladimir Joseph Stephan Orlovsky, Jul 09 2011 a(n) = n with the bits shifted to the left by n places (new bits on the right hand side are zeros). - Indranil Ghosh, Jan 05 2017 Satisfies Benford's law [Theodore P. Hill, Personal communication, Feb 06, 2017]. - N. J. A. Sloane, Feb 08 2017 Also the circumference of the n-cube connected cycle graph. - Eric W. Weisstein, Sep 03 2017 a(n) is also the number of derangements in S_{n+3} with a descent set of {i, i+1} such that i ranges from 1 to n-2. - Isabella Huang, Mar 17 2018 REFERENCES Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015. A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.29) LINKS T. D. Noe and Indranil Ghosh, Table of n, a(n) for n = 0..1000 (First 501 terms from T. D. Noe) C. Banderier and S. Schwer, Why Delannoy numbers?, arXiv:math/0411128 [math.CO], 2004. A. F. Horadam, Oresme numbers, Fib. Quart., 12 (1974), 267-271. Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6. Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018. Eric Weisstein's World of Mathematics, Cube-Connected Cycle Graph Eric Weisstein's World of Mathematics, Graph Circumference Index entries for linear recurrences with constant coefficients, signature (4,-4). FORMULA Main diagonal of array (A085454) defined by T(i, 1) = i, T(1, j) = 2j, T(i, j) = T(i-1, j) + T(i-1, j-1). - Benoit Cloitre, Aug 05 2003 Binomial transform of A005843, the even numbers. - Joshua Zucker, Jan 13 2006 G.f.: 2x/(1-2x)^2. - R. J. Mathar, Nov 21 2007 a(n) = A000079(n)*n. - Omar E. Pol, Dec 21 2008 E.g.f.: 2x exp(2x). - Geoffrey Critzer, Oct 03 2011 a(n) = A002064(n) - 1. - Reinhard Zumkeller, Mar 16 2013 From Vaclav Kotesovec, Feb 14 2015: (Start) Sum_{n>=1} 1/a(n) = log(2). Sum_{n>=1} (-1)^(n+1)/a(n) = log(3/2). (End) MAPLE g:=1/(1-2*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)*n, n=0..34); # Zerinvary Lajos, Jan 11 2009 MATHEMATICA Table[n*2^n, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2010 *) LinearRecurrence[{4, -4}, {0, 2}, 40] (* Harvey P. Dale, Mar 02 2018 *) PROG (PARI) a(n)=n<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 16:48 EDT 2019. Contains 328022 sequences. (Running on oeis4.)