|
|
A097064
|
|
Expansion of (1-4x+6x^2)/(1-2x)^2.
|
|
6
|
|
|
1, 0, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n+1)/2=A001787(n). Binomial transform of A097062.
|
|
LINKS
|
Table of n, a(n) for n=0..29.
Index entries for linear recurrences with constant coefficients, signature (4,-4).
|
|
FORMULA
|
a(n)=(n-1)2^(n-1)+3*0^n/2; a(n)=4a(n-1)-4a(n-2), n>2; a(n)=sum{k=0..n, binomial(n, k)((2k-1)/2+3(-1)^k/2) }.
|
|
MATHEMATICA
|
CoefficientList[Series[(1-4x+6x^2)/(1-2x)^2, {x, 0, 30}], x] (* or *) Join[{1}, LinearRecurrence[{4, -4}, {0, 2}, 30]] (* Harvey P. Dale, May 26 2011 *)
|
|
CROSSREFS
|
Essentially the same as A036289.
Sequence in context: A006730 A131135 A292218 * A134401 A036289 A294458
Adjacent sequences: A097061 A097062 A097063 * A097065 A097066 A097067
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, Jul 22 2004
|
|
STATUS
|
approved
|
|
|
|