The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070047 Number of partitions of n in which no part appears more than twice and no two parts differ by 1. 9
 1, 1, 2, 1, 3, 3, 5, 5, 8, 8, 12, 12, 19, 19, 27, 28, 39, 41, 55, 58, 77, 82, 106, 113, 145, 156, 196, 210, 262, 283, 348, 376, 459, 497, 600, 651, 781, 849, 1009, 1097, 1298, 1413, 1660, 1807, 2113, 2302, 2676, 2916, 3377, 3681, 4242, 4623, 5309, 5787, 6619 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Coefficients in expansion of permanent of infinite tridiagonal matrix: matrix([[1, x, 0, 0, 0, ...], [1+x, 1, x^2, 0, 0, ...], [0, 1+x^2, 1, x^3, 0, ...], [0, 0, 1+x^3, 1, x^4, ...], ...]). - Vladeta Jovovic, Jul 18 2004 Number of partitions of n into non-multiples of 3 in which no two parts differ by 1 (see the Andrews-Lewis reference). Example: a(6)=5 because we have 51,42,411,222,111111. - Emeric Deutsch, May 19 2008 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). REFERENCES D. M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54 pp. LINKS Reinhard Zumkeller and Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms 0..120 from Reinhard Zumkeller) G. E. Andrews and R. P. Lewis, An algebraic identity of F. H. Jackson and its implications for partitions, Discrete Math., 232 (2001), 77-83. see equations (3.1) and (3.2) Bin Lan and James A. Sellers, Properties of a Restricted Binary Partition Function a la Andrews and Lewis, Electronic Journal of Combinatorial Number Theory, Volume 15 #A23. Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010. Eric Weisstein's World of Mathematics, Ramanujan Theta Functions Wikipedia, Bailey pair Mingjia Yang, Doron Zeilberger, Systematic Counting of Restricted Partitions, arXiv:1910.08989 [math.CO], 2019. FORMULA Expansion of phi(-x^3) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions. - Michael Somos, Jun 02 2011 Expansion of q^(1/24) * eta(q^3)^2 / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Dec 04 2002 Euler transform of period 6 sequence [ 1, 1, -1, 1, 1, 0, ...]. - Michael Somos, Dec 04 2002 G.f. is a period 1 Fourier series which satisfies f(-1 / (1152 t)) = (2/3)^(1/2) g(t) where q = exp(2 Pi i t) and g is the g.f. of A233006. G.f.: Prod_{k>0} (1 - x^(6*k - 3))^2 * (1 - x^(6*k)) / (1 - x^k). G.f.: Prod_{n>0}[(1-q^(6n-3))/[(1-q^(3n-2))(1-q^(3n-1))]]. - Emeric Deutsch, May 19 2008 a(n) ~ 2*Pi * BesselI(1, Pi/6 * sqrt((24*n-1)/2)) / sqrt(3*(24*n-1)) ~ exp(Pi*sqrt(n/3)) / (2*3^(3/4)*n^(3/4)) * (1 - (3*sqrt(3)/(8*Pi) + Pi/(48*sqrt(3)))/sqrt(n) + (Pi^2/13824 - 45/(128*Pi^2) + 5/128)/n). - Vaclav Kotesovec, Sep 02 2015, extended Jan 11 2017 EXAMPLE G.f. = 1 + x + 2*x^2 + x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 5*x^7 + 8*x^8 + 8*x^9 + 12*x^10 + ... G.f. = 1/q + q^23 + 2*q^47 + q^71 + 3*q^95 + 3*q^119 + 5*q^143 + 5*q^167 + 8*q^191 + ... a(6)=5 because we have 6,51,42,411,33. MAPLE b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,        b(n, i-1) +add(b(n-i*j, i-2), j=1..min(n/i, 2))))     end: a:= n-> b(n, n): seq(a(n), n=0..60);  # Alois P. Heinz, Jan 18 2013 MATHEMATICA a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Product[ (1 - x^(6 k - 3))^2 (1 - x^(6 k)), {k, Ceiling[ n/6]}] / Product[ 1 - x^k, {k, n}], {x, 0, n}]]; (* Michael Somos, Jun 02 2011 *) a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^3] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Dec 03 2013 *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-2], {j, 1, Min[n/i, 2]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 04 2015, after Alois P. Heinz *) nmax = 100; CoefficientList[Series[Product[1 / ( (1-x^(3*k-2)) * (1-x^(3*k-1)) * (1 + x^(3*k)) ), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Jun 02 2011 */ (Haskell) a070047 n = p 1 n where    p k m | m == 0 = 1 | m < k = 0 | otherwise = q k (m-k) + p (k+1) m    q k m | m == 0 = 1 | m < k = 0 | otherwise = p (k+2) (m-k) + p (k+2) m -- Reinhard Zumkeller, Nov 12 2011 CROSSREFS Cf. A233006, A000700, A108961, A108962, A271661, A280937, A280938. Sequence in context: A237832 A074500 A107237 * A101198 A034394 A058689 Adjacent sequences:  A070044 A070045 A070046 * A070048 A070049 A070050 KEYWORD nonn AUTHOR N. J. A. Sloane, May 09 2002 EXTENSIONS Additional comments from Michael Somos, Dec 04 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 20:20 EST 2020. Contains 338627 sequences. (Running on oeis4.)