OFFSET
0,7
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/8) * eta(q^2)^2 / (eta(q) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 1, -1, 1, -1, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (1152 t)) = (3/2)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A070047.
G.f.: Product_{k>0} (1 + x^k) / (1 + x^(2*k) + x^(4*k)).
EXAMPLE
G.f. = 1 + x + x^3 + 2*x^6 + x^7 + x^9 + x^10 + 3*x^12 + 2*x^13 + 3*x^15 + ...
G.f. = q + q^9 + q^25 + 2*q^49 + q^57 + q^73 + q^81 + 3*q^97 + 2*q^105 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8) QPochhammer[ x^6]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A) * eta(x^6 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Dec 03 2013
STATUS
approved