login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101198 Number of partitions of n with rank 1 (the rank of a partition is the largest part minus the number of parts). 10
0, 1, 0, 1, 1, 2, 1, 3, 3, 5, 5, 8, 8, 13, 14, 20, 23, 31, 35, 48, 55, 72, 84, 108, 126, 160, 187, 233, 275, 340, 398, 489, 574, 697, 819, 988, 1158, 1390, 1627, 1941, 2271, 2696, 3145, 3721, 4335, 5104, 5938, 6967, 8088, 9462, 10964, 12783 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Column k=1 in the triangle A063995.

REFERENCES

George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.

LINKS

Table of n, a(n) for n=1..52.

FORMULA

G.f. for the number of partitions of n with rank r is Sum((-1)^k*x^(r*k)*(x^((3*k^2+k)/2)-x^((3*k^2-k)/2)), k=1..infinity)/Product(1-x^k, k=1..infinity). - Vladeta Jovovic, Dec 20 2004

Also Sum(x^(2*n+r+1)*Product((1-x^(2*n+r+1-k))/(1-x^k),k=1..n),n=0..infinity). - Vladeta Jovovic, May 05 2008

EXAMPLE

a(6)=2 because the 11 partitions 6,51,42,411,33,321,3111,222,2211,21111,111111

have ranks 5,3,2,1,1,0,-1,-1,-2,-3,-5, respectively.

MAPLE

with(combinat): for n from 1 to 35 do P:=partition(n): c:=0: for j from 1 to nops(P) do if P[j][nops(P[j])]-nops(P[j])=1 then c:=c+1 else c:=c fi od: a[n]:=c: od: seq(a[n], n=1..35);

MATHEMATICA

Table[Count[IntegerPartitions[n], _?(Max[#]-Length[#]==1&)], {n, 60}] (* Harvey P. Dale, Nov 29 2014 *)

CROSSREFS

Cf. A000041, A063995.

Cf. A101198-A101200, A101707-A101709.

Sequence in context: A074500 A107237 A070047 * A034394 A058689 A173510

Adjacent sequences:  A101195 A101196 A101197 * A101199 A101200 A101201

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Dec 12 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 07:28 EDT 2020. Contains 337317 sequences. (Running on oeis4.)