OFFSET
0,3
COMMENTS
In general, if r>=2 and g.f. = Product_{k>=1} (1-x^(r*(2*k-1))) * (1-x^(r*k)) / (1-x^k), then
a(n, r) ~ 2*Pi * BesselI(1, Pi/6 * sqrt((24*n-1)*(2*r-3)/(2*r))) / (r*sqrt((24*n-1)/(2*r-3))).
a(n, r) ~ exp(Pi * sqrt((2/3 - 1/r)*n)) * (2*r-3)^(1/4) / (2 * 3^(1/4) * r^(3/4) * n^(3/4)) * (1 -(3*sqrt(3*r)/(8*Pi*sqrt(2*r-3)) + Pi*sqrt(2*r-3)/(48*sqrt(3*r))) / sqrt(n) + (Pi^2*(2*r-3)/(13824*r) - 45*r/(128*Pi^2*(2*r-3)) + 5/128)/n).
REFERENCES
D. M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54 pp.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010.
Wikipedia, Bailey pair.
FORMULA
a(n) ~ Pi * BesselI(1, Pi * sqrt(13*(24*n-1))/24) / (4*sqrt((24*n-1)/13)).
a(n) ~ exp(Pi*sqrt(13*n/6)/2) * 13^(1/4) / (2^(13/4) * 3^(1/4) * n^(3/4)) * (1 -(3*sqrt(3)/(2*Pi*sqrt(26)) + Pi*sqrt(13)/(96*sqrt(6)))/sqrt(n) + (13*Pi^2/110592 - 45/(208*Pi^2) + 5/128)/n).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1-x^(8*(2*k-1))) * (1-x^(8*k)) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 11 2017
STATUS
approved