This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A237832 Number of partitions of n such that (greatest part) - (least part) = number of parts. 12
 0, 0, 0, 1, 0, 2, 1, 3, 3, 5, 4, 10, 8, 13, 15, 22, 22, 34, 36, 51, 58, 75, 85, 116, 130, 165, 194, 244, 281, 355, 409, 505, 591, 718, 839, 1022, 1186, 1425, 1668, 1994, 2319, 2765, 3213, 3805, 4429, 5214, 6052, 7119, 8243, 9645, 11169, 13026, 15046, 17511 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 REFERENCES George E. Andrews, 4-Shadows in q-Series and the Kimberling Index, Preprint, May 15, 2016; http://www.personal.psu.edu/gea1/pdf/315.pdf LINKS R. J. Mathar, Table of n, a(n) for n = 1..96 FORMULA A237830(n) + a(n) + A237833(n) = A000041(n). - R. J. Mathar, Nov 24 2017 EXAMPLE a(6) = 2 counts these partitions:  4+2, 4+1+1. MATHEMATICA z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p]; Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}]  (* A237830 *) Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A237831 *) Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A237832 *) Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}]  (* A237833 *) Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A237834 *) CROSSREFS Cf. A237830, A237831, A237833, A237834. Sequence in context: A026927 A240863 A288005 * A074500 A107237 A070047 Adjacent sequences:  A237829 A237830 A237831 * A237833 A237834 A237835 KEYWORD nonn,easy AUTHOR Clark Kimberling, Feb 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 00:55 EDT 2019. Contains 328135 sequences. (Running on oeis4.)