The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A237835 a(n) = n*(Pisano period of n) divided by (Pisano period of n^2). 4
 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 4, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 4, 3, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 2, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 Arpan Saha and C. S. Karthik, A few equivalences of Wall-Sun-Sun prime conjecture, arXiv:1102.1636 [math.NT], 2011. Eric Weisstein's World of Mathematics, Pisano period. Wikipedia, Pisano period. FORMULA a(n) = n/A237517(n). MATHEMATICA pp[1] = 1; pp[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[Fibonacci[k+1], n] == 1, Return[k]]]; a[n_] := n pp[n]/pp[n^2]; Array[a, 100] (* Jean-François Alcover, Dec 06 2018 *) PROG (PARI) fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2] entry_p(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, c+o]; k++); k entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entry_p(f[i, 1]^f[i, 2]), entry_p(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 23:37 EST 2020. Contains 338780 sequences. (Running on oeis4.)