The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240863 Number of partitions of n into distinct parts of which the number of odd parts is a part. 7
 0, 1, 0, 1, 0, 1, 1, 2, 1, 3, 3, 5, 4, 7, 7, 11, 10, 15, 15, 22, 22, 31, 31, 42, 43, 58, 59, 78, 82, 105, 109, 139, 146, 183, 193, 239, 255, 311, 331, 402, 430, 516, 553, 659, 710, 839, 904, 1061, 1146, 1337, 1446, 1679, 1819, 2099, 2276, 2615, 2838, 3246 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS FORMULA a(n) + A240870(n) = A000009(n) for n >= 0. EXAMPLE a(10) counts these 3 partitions:  721, 532, 4321. MATHEMATICA z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];     t1 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}] (* A240862 *)     t2 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240863, *)     t3 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240864 *)     t4 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240865 *)     t5 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240866 *)     t6 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240867 *)     t7 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240868 *) CROSSREFS Cf. A240862, A240864, A240865, A240866, A240867, A204868; for analogous sequences for unrestricted partitions, see A240573-A240579. Sequence in context: A152993 A178133 A026927 * A288005 A237832 A074500 Adjacent sequences:  A240860 A240861 A240862 * A240864 A240865 A240866 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 03:22 EST 2020. Contains 338865 sequences. (Running on oeis4.)