login
A107237
Expansion of 1 / Product_{n>=0} (1 - q^(5n+2))*(1 - q^(5n+3))*(1 - q^(5n+4)).
6
1, 0, 1, 1, 2, 1, 3, 3, 5, 5, 7, 8, 12, 12, 17, 19, 26, 28, 37, 41, 53, 60, 74, 84, 105, 118, 144, 164, 198, 224, 269, 305, 362, 411, 484, 550, 645, 729, 850, 964, 1117, 1262, 1458, 1647, 1894, 2137, 2446, 2757, 3150, 3542, 4031
OFFSET
0,5
LINKS
FORMULA
a(n) ~ Pi^(4/5) * exp(Pi*sqrt(2*n/5)) / (Gamma(1/5) * 2^(9/10) * 5^(3/5) * n^(9/10)). - Vaclav Kotesovec, Jan 07 2021
MATHEMATICA
nmax = 50; CoefficientList[Series[1/Product[(1 - x^(5*k+2))*(1 - x^(5*k+3))*(1 - x^(5*k+4)), {k, 0, nmax/5}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 07 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 13 2005
STATUS
approved