The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A237830 Number of partitions of n such that (greatest part) - (least part) < number of parts. 5
 1, 2, 3, 4, 6, 8, 11, 15, 20, 27, 36, 47, 62, 81, 105, 135, 174, 222, 282, 357, 450, 565, 707, 880, 1093, 1353, 1669, 2052, 2517, 3077, 3753, 4565, 5539, 6704, 8097, 9755, 11730, 14075, 16854, 20142, 24029, 28611, 34009, 40355, 47807, 56542, 66772, 78728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS R. J. Mathar, Table of n, a(n) for n = 1..95 George E. Andrews, 4-Shadows in q-Series and the Kimberling Index, Preprint, May 15, 2016. FORMULA a(n) + A237834(n) = A000041(n). - R. J. Mathar, Nov 24 2017 EXAMPLE a(6) = 8 counts these partitions:  6, 3+3, 4+1+1, 3+2+1, 2+2+2, 3+1+1+1, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1. MATHEMATICA z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p]; Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}]  (* A237830 *) Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A237831 *) Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A237832 *) Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}]  (* A237833 *) Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A237834 *) CROSSREFS Cf. A237831-A237834. Sequence in context: A035990 A036001 A027336 * A023434 A087192 A188917 Adjacent sequences:  A237827 A237828 A237829 * A237831 A237832 A237833 KEYWORD nonn,easy AUTHOR Clark Kimberling, Feb 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 19:43 EST 2020. Contains 338625 sequences. (Running on oeis4.)