The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132338 Decimal expansion of 1 - 1/phi. 10
 3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Density of 1's in Fibonacci word A003849. Also decimal expansion of Sum_{n>=1} ((-1)^(n+1))*1/phi^n. - Michel Lagneau, Dec 04 2011 The Lambert series evaluated at this point is 0.8828541617125076... [see André-Jeannin]. - R. J. Mathar, Oct 28 2012 Because this equals 2 - phi, this is an integer in the quadratic number field Q(sqrt(5)). (Note that this is also sqrt(5 - 3*phi).) - Wolfdieter Lang, Jan 08 2018 When m >= 1, the equation m*x^m + (m-1)*x^(m-1) + ... + 2*x^2 + x - 1 = 0 has only one positive root, u(m) (say); then lim_{m->oo} u(m) = (3-sqrt(5))/2 (see Aubonnet). - Bernard Schott, May 12 2019 Cosine of the zenith angle at which a string should be cut so that a ball tied to one of its ends, set moving without friction around a vertical circle with the minimum speed in a uniform gravitational field, will then travel through the fixed center of the circle. - Stefano Spezia, Oct 25 2020 Algebraic number of degree 2 with minimal polynomial x^2 - 3*x + 1. The other root is 1 + phi = A104457. - Wolfdieter Lang, Aug 29 2022 REFERENCES F. Aubonnet, D. Guinin and A. Ravelli, Oral, Concours d'entrée des Grandes Ecoles Scientifiques, Exercices résolus, "Crus" 1982-83, Bréal, 1983, Exercice 210, 40-42. LINKS Ivan Panchenko, Table of n, a(n) for n = 0..1000 R. André-Jeannin, Lambert series and the summation of reciprocals in certain Fibonacci-Lucas-Type sequences, Fib. Quart. 28 (1990) 223-226. FORMULA Equals 1 - 1/phi = 2 - phi, with phi from A001622. Equals A094874 - 1, or A079585 - 2, or the square of A094214. Equals (5-sqrt(5))^2/20 = 1/phi^2 = 1/A104457. - Joost Gielen, Sep 28 2013 [corrected by Joerg Arndt, Sep 29 2013] Equals (3-sqrt(5))/2. - Bernard Schott, May 12 2019 EXAMPLE 0.38196601125010515179541316563436188... MATHEMATICA RealDigits[N[1/GoldenRatio^2, 200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *) PROG (PARI) (3-sqrt(5))/2 \\ Michel Marcus, Oct 26 2020 CROSSREFS Cf. A001622, A003849, A094874, A079585, A094214, A104457. Sequence in context: A016622 A143623 A094874 * A132702 A197725 A288875 Adjacent sequences:  A132335 A132336 A132337 * A132339 A132340 A132341 KEYWORD cons,nonn AUTHOR N. J. A. Sloane, Nov 07 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 5 14:56 EDT 2022. Contains 357259 sequences. (Running on oeis4.)