login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094874 Decimal expansion of (5-sqrt(5))/2. 11
1, 3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also the limiting ratio of Lucas(n)/Fibonacci(n+1), or Fibonacci(n-1)/Fibonacci(n+1) + 1. - Alexander Adamchuk, Oct 10 2007

LINKS

Ivan Panchenko, Table of n, a(n) for n = 1..1000

Paul Cooijmans, Odds.

Yiyan Ni, Myron Hlynka, Percy H. Brill, Urn Models and Fibonacci Series, arXiv:1806.09150 [math.CO], 2018. See (9) p. 7.

J. Sondow, Evaluation of Tachiya's algebraic infinite products involving Fibonacci and Lucas numbers, Diophantine Analysis and Related Fields 2011 - AIP Conference Proceedings, vol. 1385, pp. 97-100.

FORMULA

(2-phi)*(2+phi) = 2 - 1/phi = 3 - phi = (5-sqrt(5))/2 = (2*sin(Pi/5))^2, where phi is the golden ratio (A001622).

Equals prod(n > 0, (1 + 1/A192223(n))). - Charles R Greathouse IV, Jun 26 2011

Equals Prod_{k >= 2} (-1)^k/(Fibonacci(k)*Fibonacci(k+1)). See Ni et al. - Michel Marcus, Jun 26 2018

EXAMPLE

1.38196601125010515179541316563436188...

MATHEMATICA

RealDigits[5/2 - Sqrt[5]/2, 10, 100][[1]] (* Alonso del Arte, Jun 26 2018 *)

PROG

(PARI) (5-sqrt(5))/2 \\ Charles R Greathouse IV, Jun 26 2011

CROSSREFS

Equals A079585-1.

Cf. A000032, A000045, A192223.

Sequence in context: A016622 A143623 * A132338 A132702 A197725 A022833

Adjacent sequences:  A094871 A094872 A094873 * A094875 A094876 A094877

KEYWORD

cons,nonn,easy

AUTHOR

N. J. A. Sloane, Jun 14 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 18 07:47 EDT 2018. Contains 312735 sequences. (Running on oeis4.)