login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132339 Array read by antidiagonals: see formula line for definition. 5
1, -1, -1, 0, 2, 0, 0, -2, -2, 0, 0, 2, 10, 2, 0, 0, -2, -28, -28, -2, 0, 0, 2, 60, 168, 60, 2, 0, 0, -2, -110, -660, -660, -110, -2, 0, 0, 2, 182, 2002, 4290, 2002, 182, 2, 0, 0, -2, -280, -5096, -20020, -20020, -5096, -280, -2, 0, 0, 2, 408, 11424, 74256, 136136, 74256 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Table of n, a(n) for n=0..61.

G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle}, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.

FORMULA

A(n,k) = 2(-1)^(n+k) (n+k-1)! (2n+2k-3)! / ( n! k! (2n-1)! (2k-1)! ), n >= 0, k >= 0.

EXAMPLE

Array begins:

1 -1 0 0 0 0 0 0 ...

-1 2 -2 2 -2 2 -2 2 ...

0 -2 10 -28 60 -110 ...

0 2 -28 168 -660 2002 ...

...

MATHEMATICA

Flatten[{{1}, {-1, -1}}~Join~Table[(2 (-1)^(# + k) (# + k - 1)! (2 # + 2 k - 3)!)/(#! k! (2 # - 1)! (2 k - 1)!) &@(n - k), {n, 2, 10}, {k, 0, n}]] (* Michael De Vlieger, Mar 26 2016 *)

CROSSREFS

Rows give A006331-A006334. Main diagonal is A132341.

Sequence in context: A122071 A099766 A194947 * A137676 A238130 A238707

Adjacent sequences:  A132336 A132337 A132338 * A132340 A132341 A132342

KEYWORD

sign,tabl,easy

AUTHOR

N. J. A. Sloane, Nov 08 2007

EXTENSIONS

More terms from Max Alekseyev, Sep 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 15:27 EST 2017. Contains 295089 sequences.