The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143623 Decimal expansion of the constant cos(1) + sin(1) = 1.38177 32906 ... . 8
 1, 3, 8, 1, 7, 7, 3, 2, 9, 0, 6, 7, 6, 0, 3, 6, 2, 2, 4, 0, 5, 3, 4, 3, 8, 9, 2, 9, 0, 7, 3, 2, 7, 5, 6, 0, 3, 3, 5, 4, 8, 7, 3, 4, 8, 1, 4, 1, 6, 2, 9, 3, 2, 9, 3, 3, 4, 2, 8, 4, 8, 9, 6, 5, 3, 7, 3, 0, 1, 0, 7, 9, 9, 1, 6, 5, 7, 1, 1, 4, 3, 3, 4, 6, 6, 5, 9, 1, 5, 9, 9, 6, 3, 0, 2, 3, 5, 7, 8, 5, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS cos(1) + sin(1) = sum {n = 0.. inf} (-1)^floor(n/2)/n! = 1 + 1/1! - 1/2! - 1/3! + 1/4! + 1/5! - 1/6! - 1/7! + + - - ... . Define E_2(k) = sum {n = 0.. inf} (-1)^floor(n/2)*n^k/n! for k = 0,1,2,... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1). Furthermore, E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = E_2(1) - E_2(0), E_2(3) = -3*E_2(0) and E_2(4) = -5*E_2(1) - 6*E_2(0). The precise result is E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1). The decimal expansion of the constant cos(1) - sin(1) = E_2(1) is recorded in A143624. Compare with A143625. LINKS FORMULA sin(1+Pi/4)*sqrt(2). - Franklin T. Adams-Watters, Jun 27 2014 EXAMPLE cos(1) + sin(1) = 1.38177 32906 76036 22405 ... . MATHEMATICA RealDigits[Cos[1]+Sin[1], 10, 120][[1]] (* Harvey P. Dale, Mar 01 2019 *) CROSSREFS A049469, A049470, A057077, A121867, A121868, A143624, A143625. Sequence in context: A199270 A131563 A016622 * A094874 A132338 A132702 Adjacent sequences:  A143620 A143621 A143622 * A143624 A143625 A143626 KEYWORD cons,easy,nonn AUTHOR Peter Bala, Aug 30 2008 EXTENSIONS Offset corrected by R. J. Mathar, Feb 05 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 23:30 EDT 2020. Contains 337175 sequences. (Running on oeis4.)