

A003095


a(n) = a(n1)^2 + 1 for n >= 1, with a(0) = 0.
(Formerly M1544)


60



0, 1, 2, 5, 26, 677, 458330, 210066388901, 44127887745906175987802, 1947270476915296449559703445493848930452791205, 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Number of binary trees of height less than or equal to n. [Corrected by Orson R. L. Peters, Jan 03 2020]
The rightmost digits cycle (0,1,2,5,6,7,0,1,2,5,6,7,...).  Jonathan Vos Post, Jul 21 2005
Apart from the initial term, a subsequence of A008318.  Reinhard Zumkeller, Jan 17 2008
Partial sums of A001699.  Jonathan Vos Post, Feb 17 2010
Corresponds to the second and second last diagonals of A119687.  John M. Campbell, Jul 25 2011
This is a divisibility sequence.  Michael Somos, Jan 01 2013
Sum_{n>=1} 1/a(n) = 1.739940825174794649210636285335916041018367182486941... .  Vaclav Kotesovec, Jan 30 2015
From Vladimir Vesic, Oct 03 2015: (Start)
Forming Herbrand's domains of formula: (∃x)(∀y)(∀z)(∃k)(P(x)∨Q(y)∧R(k))
where: x>a
k>f(y,z)
we get:
H0 = {a}
H1 = {a, f(a,a)}
H2 = {a, f(a,a), f(a,f(a,a)), f(f(a,a),a), f(f(a,a),f(a,a))}
...
The number of elements in each domain follows this sequence.
(End)
It is an open question whether or not this sequence satisfies Benford's law [BergerHill, 2017]  N. J. A. Sloane, Feb 07 2017
This is a strong divisibility sequence; see A329429.  Clark Kimberling, Nov 13 2019
From Peter Bala, Oct 31 2022: (Start)
Let k be a positive integer. Clearly, the sequence obtained by reducing a(n) modulo k is eventually periodic. Conjectures:
1) The sequence obtained by reducing a(n) modulo 2^k is eventually periodic with period 2.
2) The sequence obtained by reducing a(n) modulo 10^k is eventually periodic with period 6 (the case k = 1 is noted above).
3) The sequence obtained by reducing a(n) modulo 20^k is eventually periodic with period 6.
4) For n >= floor(k/2) and for 1 <= i <= 6, the value of a(6*n+i) mod 10^k is a constant independent of n. The digits of these 6 constant integers, when read from right to left, are the first k digits of the 10adic numbers A318135 (i = 1), A318136 (i = 2), A318137 (i = 3), A318138 (i = 4), A318139 (i = 5) and A318140 (i = 6), respectively. An example is given below. (End)


REFERENCES

Mordechai BenAri, Mathematical Logic for Computer Science, Third edition, 173203.
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 443448.
R. K. Guy, How to factor a number, Proc. 5th Manitoba Conf. Numerical Math., Congress. Num. 16 (1975), 4989.
R. Penrose, The Emperor's New Mind, Oxford, 1989, p. 122.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..13
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429437, alternative link.
A. Berger and T. P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132134.
Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Transactions (2021) Vol. 1, No. 1, Article 1.
P. Flajolet and A. M. Odlyzko, Limit distributions of coefficients of iterates of polynomials with applications to combinatorial enumerations, Math. Proc. Camb. Phil. Soc., 96 (1984), 237253.
Claudio Gentile, Fabio Vitale, and Anand Rajagopalan, Flattening a Hierarchical Clustering through Active Learning, arXiv:1906.09458 [cs.LG], 2019.
Spencer Hamblen, Rafe Jones, and Kalyani Madhu, The density of primes in orbits of z^d + c, arXiv:1303.6513 [math.NT], 2013; to appear, Int. Math. Res. Not., c. 2015.
Dimitur Krustev, Simple Programs on Binary Trees Testing and Decidable Equivalence, 2016.
Robin LamarchePerrin, An Informationtheoretic Framework for the Lossy Compression of Link Streams, arXiv:1807.06874 [cs.DS], 2018.
R. LamarchePerrin, Y. Demazeau, and J.M. Vincent, A Generic Algorithmic Framework to Solve Special Versions of the Set Partitioning Problem, Preprint 105, MaxPlanckInstitut fur Mathematik in den Naturwissenschaften, Leipzig, 2014.
C. Lenormand, Arbres et permutations II, see p. 6.
Saad Mneimneh, Simple Variations on the Tower of Hanoi to Guide the Study of Recurrences and Proofs by Induction, Department of Computer Science, Hunter College, CUNY, 2019.
Michael Penn, a stylish proof that..., YouTube video, 2021.
R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
M. Tainiter, Algebraic approach to stopping variable problems: Representation theory and applications, J. Combinatorial Theory 9 1970 148161.
P. Tarau, A Logic Programming Playground for Lambda Terms, Combinators, Types and Treebased Arithmetic Computations, arXiv preprint arXiv:1507.06944 [cs.LO], 2015.
Stephan Wagner and Volker Ziegler, Irrationality of growth constants associated with polynomial recursions, arXiv:2004.09353 [math.NT], 2020.
Wikipedia, Herbrand Structure
Damiano Zanardini, Computational Logic, UPM European Master in Computational Logic (EMCL) School of Computer Science Technical University of Madrid.
Index entries for sequences of form a(n+1)=a(n)^2 + ...
Index to divisibility sequences
Index entries for sequences related to Benford's law


FORMULA

a(n) = B_{n1}(1) where B_n(x) = 1 + x*B_{n1}(x)^2 is the generating function of trees of height <= n.
a(n) is asymptotic to c^(2^n) where c=1.2259024435287485386279474959130085213... (see A076949).  Benoit Cloitre, Nov 27 2002
c = b^(1/4) where b is the constant in Bottomley's formula in A004019. a(n) appears very asymptotic to c^(2^n)  Sum_{k>=1} A088674(k)/(2*c^(2^n))^(2*k1).  Gerald McGarvey, Nov 17 2007
a(n) = Sum_{i=1..n} A001699(i).  Jonathan Vos Post, Feb 17 2010
a(2n) mod 2 = 0 ; a(2n+1) mod 2 = 1.  Altug Alkan, Oct 04 2015
a(n) + a(n1) = A213437(n).  Peter Bala, Feb 03 2017
0 = a(n)^2*(+a(n+1) + a(n+2)) + a(n+1)^2*(a(n+1)  a(n+2)  a(n+3)) + a(n+2)^3 for all n>=0.  Michael Somos, Feb 10 2017
a(n) = A091980(2^(n1)) for n > 0.  Alois P. Heinz, Jul 11 2019


EXAMPLE

G.f. = x + 2*x^2 + 5*x^3 + 26*x^4 + 677*x^5 + 458330*x^6 + 210066388901*x^7 + ...
From Peter Bala, Oct 31 2022: (Start)
n a(6*n+1) mod 10^11
1 10066388901
2 72084948901
3 67988948901
4 61588948901
5 01588948901
6 01588948901
7 01588948901
... ...
A318135 begins 1, 0, 9, 8, 4, 9, 8, 8, 5, 1, 0, 2, .... (End)


MAPLE

a:= proc(n) option remember; `if`(n=0, 0, a(n1)^2+1) end:
seq(a(n), n=0..10); # Alois P. Heinz, Jul 11 2019


MATHEMATICA

NestList[#^2+1&, 0, 10] (* Harvey P. Dale, Dec 17 2010 *)


PROG

(PARI) {a(n) = if( n<1, 0, 1 + a(n1)^2)}; /* Michael Somos, Jan 01 2013 */
(Magma)
function A003095(n)
if n eq 0 then return 0;
else return 1 + A003095(n1)^2;
end if; return A003095;
end function;
[A003095(n): n in [0..12]]; // G. C. Greubel, Nov 29 2022
(SageMath)
def A003095(n): return 0 if (n==0) else 1 + A003095(n1)^2
[A003095(n) for n in range(13)] # G. C. Greubel, Nov 29 2022


CROSSREFS

Cf. A001699, A004019, A038044, A056207, A076949, A077496, A091980, A143848.
Cf. A143849, A213437, A247981, A248218, A248219, A318135, A318136, A318137.
Cf. A318138, A318139, A318140, A355108.
Cf. A137560, which enumerates binary trees of height less than n and exactly j leaf nodes.  Robert Munafo, Nov 03 2009
Sequence in context: A322705 A167007 A064006 * A023362 A138613 A299104
Adjacent sequences: A003092 A003093 A003094 * A003096 A003097 A003098


KEYWORD

nonn,easy,nice,changed


AUTHOR

N. J. A. Sloane and Richard Stanley


EXTENSIONS

Additional comments from Cyril Banderier, Jun 05 2000
Minor edits by Vaclav Kotesovec, Oct 04 2014
Initial term clarified by Clark Kimberling, Nov 13 2019


STATUS

approved



