login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010503 Decimal expansion of 1/sqrt(2). 46
7, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The decimal expansion of sqrt(50) = 5*sqrt(2) = 7.0710678118654752440... gives essentially the same sequence.

1/sqrt(2) = cos(Pi/4) = sqrt(2)/2. - Eric Desbiaux, Nov 05 2008

Also real and imaginary part of the square root of the imaginary unit. - Alonso del Arte, Jan 07 2011

1/sqrt(2) = (1/2)^(1/2) = (1/4)^(1/4) (see the comments in A072364).

If a triangle has sides whose lengths form a harmonic progression in the ratio 1 : 1/(1 + d) : 1/(1 + 2d) then the triangle inequality condition requires that d be in the range -1 + 1/sqrt(2) < d < 1/sqrt(2). - Frank M Jackson, Oct 11 2011

Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence A010060, then prod(n >= 0, ((2*n + 1)/(2*n + 2))^epsilon(n) ) = 1/sqrt(2). - Jonathan Vos Post, Jun 03 2012

The square root of 1/2 and thus it follows from the Pythagorean theorem that it is the sine of 45 degrees (and the cosine of 45 degrees). - Alonso del Arte, Sep 24 2012

Circumscribed sphere radius for a regular octahedron with unit edges. In electric engineering, ratio of effective amplitude to peak amplitude of an alternating current/voltage. - Stanislav Sykora, Feb 10 2014

Radius of midsphere (tangent to edges) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..20000

P. C. Fishburn and J. A. Reeds, Bell inequalities, Grothendieck's constant and root two, SIAM J. Discrete Math., Vol. 7, No. 1, Feb. 1994, pp 48-56.

J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; see p. 3 in the link.

Eric W. Weisstein Digit Product. From MathWorld--A Wolfram Web Resource.

Wikipedia, Platonic solid

FORMULA

a(n) = 9 - A268682(n). As constants, this sequence is 1 - A268682.  Philippe Deléham, Feb 21 2016

EXAMPLE

0.7071067811865475...

MAPLE

Digits:=100; evalf(1/sqrt(2)); Wesley Ivan Hurt, Mar 27 2014

MATHEMATICA

N[ 1/Sqrt[2], 200]

PROG

(PARI) default(realprecision, 20080); x=10*(1/sqrt(2)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010503.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009

(MAGMA) 1/Sqrt(2); // Vincenzo Librandi, Feb 21 2016

CROSSREFS

Cf. A040042, A072364, A268682.

Cf. A073084 (infinite tetration limit).

Platonic solids circumradii: A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).

Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A019863 (icosahedron), A239798 (dodecahedron).

Sequence in context: A036479 A085966 A010678 * A158857 A255727 A011438

Adjacent sequences:  A010500 A010501 A010502 * A010504 A010505 A010506

KEYWORD

nonn,cons,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Harry J. Smith, Jun 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 11:07 EST 2016. Contains 278776 sequences.