OFFSET
0,2
COMMENTS
Binomial transform of [1, 1, 5, 0, 0, 0, 0, 0, ...]. - Johannes W. Meijer, Jul 07 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = (5*n^2 - 3*n + 2)/2.
a(n) = 2*a(n-1) - a(n-2) + 5.
a(n) = a(n-1) + 5*n - 4.
a(n) = 5*binomial(n+2,2) - 9*n - 4.
a(n) = A000217(n+1) - A000217(n) + 5*A000217(n-1); triangular numbers. - Johannes W. Meijer, Jul 07 2011
O.g.f.: (1-x+5*x^2)/(1-x)^3.
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: exp(x)*(2 + 2*x + 5*x^2)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
Table[(5n^2-3n+2)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 2, 8}, 50] (* Harvey P. Dale, Aug 08 2016 *)
PROG
(Magma) A192136:=func< n | (5*n^2-3*n+2)/2 >; [ A192136(n): n in [0..50] ]; // Klaus Brockhaus, Jun 27 2011
(PARI) a(n)=n*(5*n-3)/2+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric Werley, Jun 24 2011
STATUS
approved