login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192136
a(n) = (5*n^2 - 3*n + 2)/2.
4
1, 2, 8, 19, 35, 56, 82, 113, 149, 190, 236, 287, 343, 404, 470, 541, 617, 698, 784, 875, 971, 1072, 1178, 1289, 1405, 1526, 1652, 1783, 1919, 2060, 2206, 2357, 2513, 2674, 2840, 3011, 3187, 3368, 3554, 3745, 3941, 4142, 4348, 4559, 4775, 4996, 5222, 5453, 5689
OFFSET
0,2
COMMENTS
Binomial transform of [1, 1, 5, 0, 0, 0, 0, 0, ...]. - Johannes W. Meijer, Jul 07 2011
FORMULA
a(n) = (5*n^2 - 3*n + 2)/2.
a(n) = 2*a(n-1) - a(n-2) + 5.
a(n) = a(n-1) + 5*n - 4.
a(n) = 5*binomial(n+2,2) - 9*n - 4.
a(n) = A000217(n+1) - A000217(n) + 5*A000217(n-1); triangular numbers. - Johannes W. Meijer, Jul 07 2011
O.g.f.: (1-x+5*x^2)/(1-x)^3.
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: exp(x)*(2 + 2*x + 5*x^2)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
Table[(5n^2-3n+2)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 2, 8}, 50] (* Harvey P. Dale, Aug 08 2016 *)
PROG
(Magma) A192136:=func< n | (5*n^2-3*n+2)/2 >; [ A192136(n): n in [0..50] ]; // Klaus Brockhaus, Jun 27 2011
(PARI) a(n)=n*(5*n-3)/2+1 \\ Charles R Greathouse IV, Jun 17 2017
KEYWORD
nonn,easy
AUTHOR
Eric Werley, Jun 24 2011
STATUS
approved