|
|
A006632
|
|
a(n) = 3*binomial(4*n-1,n-1)/(4*n-1).
(Formerly M2997)
|
|
25
|
|
|
1, 3, 15, 91, 612, 4389, 32890, 254475, 2017356, 16301164, 133767543, 1111731933, 9338434700, 79155435870, 676196049060, 5815796869995, 50318860986108, 437662920058980, 3824609516638444, 33563127932394060, 295655735395397520, 2613391671568320765
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) is the number of ordered trees (A000108) with 3n-1 edges in which every non-leaf vertex has exactly two leaf children (no restriction on non-leaf children). For example, a(2) counts the 3 trees
\/......\/......\/
.\|/...\|/....\|/ . - David Callan, Aug 22 2014
a(n) is the number of lattice paths from (0,0) to (3n,n) using only the steps (1,0) and (0,1) and which are strictly below the line y = x/3 except at the path's endpoints. - Lucas A. Brown, Aug 21 2020
|
|
REFERENCES
|
H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=1..22.
O. Aichholzer, A. Asinowski, T. Miltzow, Disjoint compatibility graph of non-crossing matchings of points in convex position, arXiv preprint arXiv:1403.5546 [math.CO], 2014.
Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 438
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
|
|
FORMULA
|
a(n) = binomial(4*n-1, n)/(4*n-1) = 3*binomial(4*n-2, n-1) - binomial(4*n-2, n). - David Callan, Sep 15 2004
G.f.: g^3 where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
a(n) = (3/4)*binomial(4*n,n)/(4*n-1). - Bruno Berselli, Jan 17 2014
From Wolfdieter Lang, Feb 06 2020:(Start)
G.f.: (3/4)*(1 - hypergeom([-1, 1, 2]/4, [1, 2]/3, (4^4/3^3)*x)),
E.g.f.: (3/4)*(1 - hypergeom([-1, 1, 2]/4, [1, 2, 3]/3, (4^4/3^3)*x)). (End)
|
|
MAPLE
|
A006632:=n->3*binomial(4*n-1, n-1)/(4*n-1): seq(A006632(n), n=1..30); # Wesley Ivan Hurt, Oct 23 2017
|
|
MATHEMATICA
|
InverseSeries[Series[y*(1-y)^3, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 07 2000 *)
a[ n_] := If[ n < 1, 0, Binomial[4 n - 2, n - 1] / n]; (* Michael Somos, Aug 22 2014 *)
|
|
PROG
|
(PARI) a(n) = 3*binomial(4*n-1, n-1)/(4*n-1) \\ Felix Fröhlich, Oct 23 2017
|
|
CROSSREFS
|
A112385 divided by 2.
Cf. A000108, A002293, A006013, A120588.
Sequence in context: A047019 A099251 A171790 * A159928 A020018 A124553
Adjacent sequences: A006629 A006630 A006631 * A006633 A006634 A006635
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Simon Plouffe
|
|
STATUS
|
approved
|
|
|
|