login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055580
Björner-Welker sequence: 2^n*(n^2 + n + 2) - 1.
15
1, 7, 31, 111, 351, 1023, 2815, 7423, 18943, 47103, 114687, 274431, 647167, 1507327, 3473407, 7929855, 17956863, 40370175, 90177535, 200278015, 442499071, 973078527, 2130706431, 4647288831, 10099884031, 21877489663
OFFSET
0,2
COMMENTS
a(n) is the d=1 Betti number of the complement of '3-equal' arrangements in n-dimensional real space, see Björner-Welker reference, Table I, pp. 308-309, column '1' with k=3 and Th. 5.2, pp. 297-298.
Binomial transform of [1/2, 2/3, 3/4, 4/5, ...] = 1/2, 7/6, 31/12, 111/20, 351/30, 1023/42, ..., where 2, 6, 12, 20, ... = A002378 (deleting the zero). - Gary W. Adamson, Apr 28 2005
Number of three-dimensional block structures associated with n joint systems in the construction of stable underground structures. - Richard M. Green, Jul 26 2011
Number of monotone mappings from the chain with three points to the complete binary tree of height n (n+1 levels). For example, the seven monotone mappings from the chain with three points (denoted 1,2,3, in order) to the complete binary tree with two levels (with a the root of the tree, and b, c the atoms) are: f(1)=f(2)=f(3)=a; f(1)=f(2)=a, f(3)=b; f(1)=f(2)=a, f(3)=c; f(1)=a, f(2)=f(3)=b; f(1)=a, f(2)=f(3)=c; f(1)=f(2)=f(3)=b; f(1)=f(2)=f(3)=c. - Pietro Codara, Mar 26 2015
REFERENCES
H. Barcelo and S. Smith, The discrete fundamental group of the order complex of B_n, Abstract 1020-05-141, 1020th Meeting Amer. Math. Soc., Cincinatti, Ohio, Oct 21-22, 2006.
LINKS
Henry Adams, Samir Shukla, and Anurag Singh, Čech complexes of hypercube graphs, arXiv:2212.05871 [math.CO], 2022.
H. Barcelo and R. Laubenbacher, Perspectives on A-homotopy theory and its applications, Discr. Math., 298 (2005), 39-61.
H. Barcelo and S. Smith, The discrete fundamental group of the order complex of B_n, arXiv:0711.0915 [math.CO], 2007.
A. Björner and V. Welker, The homology of "k-equal" manifolds and related partition lattices, Adv. Math., 110 (1995), 277-313.
Harry Crane, Left-right arrangements, set partitions, and pattern avoidance, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
Robert Davis and Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020.
A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
FORMULA
a(n) = A055252(n+3, 3).
a(n) = Sum_{j=0..n-1} a(j) + A045618(n), n >= 1.
G.f.: 1/((1-2*x)^3*(1-x)).
Partial sums of A001788 (without leading zero). - Paul Barry, Jun 26 2003
a(n) = A001788(n) - A000337(n). - Jon Perry, Dec 12 2003
a(n) = A119258(n+4,n). - Reinhard Zumkeller, May 11 2006
E.g.f.: 2*(1 + 2*x + 2*x^2)*exp(2*x) - exp(x). - G. C. Greubel, Oct 28 2016
a(n) = Sum_{k=0..n+1} Sum_{i=0..n+1} i^2 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017
MATHEMATICA
Table[ n*(n+1)*2^(n-2), {n, 0, 26}] // Accumulate // Rest (* Jean-François Alcover, Jul 09 2013, after Paul Barry *)
LinearRecurrence[{7, -18, 20, -8}, {1, 7, 31, 111}, 30] (* Harvey P. Dale, Nov 27 2014 *)
PROG
(Magma) [2^n*(n^2+n+2)-1: n in [0..35]]; // Vincenzo Librandi, Jul 28 2011
(PARI) a(n)=(n^2+n+2)<<n-1 \\ Charles R Greathouse IV, Jul 28 2011
CROSSREFS
Fourth column of triangle A055252.
Sequence in context: A160607 A205492 A109756 * A364635 A097786 A350498
KEYWORD
easy,nonn
AUTHOR
Wolfdieter Lang, May 26 2000; revised Feb 12 2001
EXTENSIONS
Edited (for consistency with change of offset) by M. F. Hasler, Nov 03 2012
STATUS
approved