login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045618 Partial sums of A000337(n+4), n >= 0. 29
1, 6, 23, 72, 201, 522, 1291, 3084, 7181, 16398, 36879, 81936, 180241, 393234, 851987, 1835028, 3932181, 8388630, 17825815, 37748760, 79691801, 167772186, 352321563, 738197532, 1543503901, 3221225502, 6710886431, 13958643744 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Convolution of A000225(n+1), n >= 0, (partial sums of powers of 2).

Sum of diameters of all nonempty subsets of {1, 2, ..., n+2}. - Charles R Greathouse IV, Nov 21 2011

a(n) is the sum of all the ways of adding the k-tuples of the terms found in A000079(0) to A000079(n). For a(2) the result is (1)+(2)+(4)=7; (1+2)+(2+4)=9; (1+2+4)=7 with 7+9+7=23. - J. M. Bergot, Jun 19 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Brian Nakamura, Elizabeth Yang, Competition graphs induced by permutations, arXiv preprint arXiv:1503.05617 [math.CO], 2015.

A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.

Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).

FORMULA

a(n) = n + 5 + (n-1)*2^(n+2).

G.f.: 1/((1-2*x)*(1-x))^2.

a(n) = Sum_{i=0...n+1} (2^(n+2-i) - 1)*(2^i - 1). - J. M. Bergot, Sep 16 2017

a(n) = Sum_{k=0..n+2} Sum_{i=0..n+2} (i-k) * C(n-k+2,i). - Wesley Ivan Hurt, Sep 19 2017

MATHEMATICA

Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 2, k + 2], {k, 0, n}], {n, 1, 28}] (* Zerinvary Lajos, Jul 08 2009 *)

Rest[Accumulate[LinearRecurrence[{5, -8, 4}, {0, 1, 5}, 40]]] (* Harvey P. Dale, Dec 19 2011 *)

CoefficientList[Series[1/((1 - x)^2 (1 - 2 x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 22 2014 *)

LinearRecurrence[{6, -13, 12, -4}, {1, 6, 23, 72}, 28] (* Ray Chandler, Aug 03 2015 *)

PROG

(PARI) a(n)=(n-1)<<(n+2)+n+5 \\ Charles R Greathouse IV, Nov 21 2011

CROSSREFS

Cf. A000337.

Sequence in context: A005745 A213557 A273386 * A038737 A038797 A136530

Adjacent sequences:  A045615 A045616 A045617 * A045619 A045620 A045621

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 11:39 EST 2018. Contains 317447 sequences. (Running on oeis4.)