This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006595 a(n) = (n+2)!/4 + n!/2. (Formerly M1794) 3
 1, 2, 7, 33, 192, 1320, 10440, 93240, 927360, 10160640, 121564800, 1576713600, 22034073600, 330032102400, 5274286617600, 89575694208000, 1611054821376000, 30589118816256000, 611426688897024000, 12833558093131776000, 282216632948490240000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A non-plane recursive tree is a rooted labeled plane tree (the children of a node are not ordered) with the property that the labels increase along any path from the root to a leaf. a(n) = the total number of vertices of outdegree 1 among the set of n! non-plane recursive trees on n+1 vertices. An example is given below. - Peter Bala, Jul 08 2012 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 258. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Dan Daly and Lara Pudwell, Pattern avoidance in rook monoids, Special Session on Patterns in Permutations and Words, Joint Mathematics Meetings, 2013. - From N. J. A. Sloane, Feb 03 2013 Rui-Li Liu, Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7. J. R. Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1285-1332. FORMULA E.g.f.: 1/2*(x^2-2*x+2)/(1-x)^3. - Peter Bala, Jul 08 2012 a(n) +(-n-2)*a(n-1) +2*a(n-2) +2*(-n+2)*a(n-3)=0. - R. J. Mathar, May 30 2014 EXAMPLE a(3) = 7. There are 3! = 6 non-plane recursive trees on 4 nodes shown below. The total number of nodes of outdegree 1 is 3+1+1+1+1+0 = 7. .0o......0o..........0o..........0o.........0o...........0o...... ..|.......|........../.\........./.\......../.\........../|\..... ..|.......|........./...\......./...\....../...\......../.|.\.... .1o......1o.......1o.....o3...1o....o2...2o.....o1...../..|..\... ..|....../.\.......|...........|..........|..........1o..2o...o3. ..|...../...\......|...........|..........|...................... .2o...2o.....o3...2o..........3o.........3o...................... ..|.............................................................. ..|.............................................................. .3o.............................................................. ................................................................. MATHEMATICA Table[(n + 2)! / 4 + n! / 2, {n, 0, 30}] (* Vincenzo Librandi, Aug 26 2016 *) PROG (PARI) a(n) = (n+2)!/4 + n!/2; \\ Michel Marcus, Aug 04 2013 (MAGMA) [Factorial(n+2)/4+Factorial(n)/2: n in [0..25]]; // Vincenzo Librandi, Aug 26 2016 CROSSREFS A diagonal of A059418. Sequence in context: A104981 A058797 A121965 * A179525 A217033 A059099 Adjacent sequences:  A006592 A006593 A006594 * A006596 A006597 A006598 KEYWORD nonn,easy AUTHOR EXTENSIONS Improved description and sequence extended by N. J. A. Sloane, Aug 15 1995 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 12:39 EST 2018. Contains 317276 sequences. (Running on oeis4.)