login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097735 Pell equation solutions (8*a(n))^2 - 65*b(n)^2 = -1 with b(n):=A097736(n), n>=0. 2
1, 259, 66821, 17239559, 4447739401, 1147499525899, 296050429942541, 76379863425649679, 19705708713387674641, 5083996468190594407699, 1311651383084459969511701, 338400972839322481539611159 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..11.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n)= S(n, 2*129) + S(n-1, 2*129) = S(2*n, 2*sqrt(65)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).

a(n)= ((-1)^n)*T(2*n+1, 8*I)/(8*I) with the imaginary unit I and Chebyshev polynomials of the first kind. See the T-triangle A053120.

G.f.: (1+x)/(1-2*129*x+x^2).

a(n)=258*a(n-1)-a(n-2), n>1 ; a(0)=1, a(1)=259 . [From Philippe Deléham, Nov 18 2008]

EXAMPLE

(x,y) = (8,1), (2072,257), (534568,66305), ... give the positive integer solutions to x^2 - 65*y^2 =-1.

MATHEMATICA

LinearRecurrence[{258, -1}, {1, 259}, 20] (* Harvey P. Dale, Oct 30 2011 *)

CROSSREFS

Cf. A097731 for S(n, 2*129).

Sequence in context: A229433 A022221 A121918 * A063485 A214471 A139408

Adjacent sequences:  A097732 A097733 A097734 * A097736 A097737 A097738

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 00:18 EST 2014. Contains 250152 sequences.