login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250888 G.f. A(x) satisfies: x = A(x) * (1 + A(x)) * (1 - 4*A(x)). 1
1, 3, 22, 195, 1938, 20622, 229836, 2648547, 31301050, 377301210, 4620769140, 57333249870, 719179311732, 9105192433980, 116197502184984, 1493159297251491, 19303993468386378, 250907887026047010, 3276818401723155300, 42977976005402922330, 565863442299520006620 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..873

Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.

FORMULA

G.f.: Series_Reversion(x - 3*x^2 - 4*x^3).

a(n) ~ 2^(n - 3/2) * 3^(n - 3/4) * (27 + 7*sqrt(21))^(n - 1/2) / (7^(1/4) * sqrt(Pi) * n^(3/2) * 5^(2*n - 1)). - Vaclav Kotesovec, Aug 22 2017

EXAMPLE

G.f.: A(x) = x + 3*x^2 + 22*x^3 + 195*x^4 + 1938*x^5 + 20622*x^6 +...

Related expansions.

A(x)^2 = x^2 + 6*x^3 + 53*x^4 + 522*x^5 + 5530*x^6 + 61452*x^7 +...

A(x)^3 = x^3 + 9*x^4 + 93*x^5 + 1008*x^6 + 11370*x^7 + 132111*x^8 +...

where x = A(x) - 3*A(x)^2 - 4*A(x)^3.

MATHEMATICA

Rest[CoefficientList[InverseSeries[Series[x - 3*x^2 - 4*x^3, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Aug 22 2017 *)

PROG

(PARI) {a(n)=polcoeff(serreverse(x - 3*x^2 - 4*x^3 + x^2*O(x^n)), n)}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Sequence in context: A001393 A046743 A121952 * A098618 A207326 A006783

Adjacent sequences:  A250885 A250886 A250887 * A250889 A250890 A250891

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 17:31 EST 2020. Contains 338807 sequences. (Running on oeis4.)